
OPERATION AND ADMINISTRATION OF ACCESS CONTROL

IN IoT ENVIRONMENTS

by

MEHRNOOSH SHAKARAMI, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

COMMITTEE MEMBERS:
Ravi Sandhu, Ph.D., Chair

Dr. Murtuza Jadliwala, Ph.D.
Ram Krishnan, Ph.D.
Palden Lama, Ph.D.

Xiaoyin Wang, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Science

Department of Computer Science
May 2022

Copyright 2022 Mehrnoosh Shakarami
All rights reserved.

DEDICATION

I would like to dedicate this dissertation to the memory of my beloved mother, Mrs. Maryam
Khademi, my father, Mr. Mohammadhassan Shakarami, and my sister, Dr. Mehrnaz Shakarami,
who have been always my endless and unconditional source of support, inspiration, and love. I
would also like to dedicate this dissertation to my beloved husband, Dr. Seyed Ali Mirheidari,
whose unfailing love and support sustained me during the most challenging times of this journey.

ACKNOWLWDGEMENTS

First and foremost, I would like to express my profound gratitude to the best Ph.D. advisor one

can hope for, Professor Ravi Sandhu, who has been an amazing mentor for me. Through his

prodigious knowledge, regular feedback, support, and guidance, as well as his constant pushing

of my thinking, he challenged me in all the right ways. Having the opportunity to learn the art of

being a better human from such an accomplished scientist is an honor. Professor (as I call him), I

will adhere to what I have learned from you to enlighten my path throughout my career and life.

My special appreciation goes out to Mr. James Benson, the adept technology research associate

at ICS, who was my great ally to push the hardest obstacles on my research journey. His knowledge

and patience were great supports to bring this dissertation to fruition. I would also like to appreciate

my committee members, Dr. Ram Krishnan, Dr. Murtuza Jadliwala, Dr. Palden Lama, and Dr.

Xiaoyin Wang, who provided me with their valuable feedback, insights, and support to make this

dissertation more valuable. I convey my deep gratitude to the staff members from the ICS and the

CS department, Suzanne Tanaka and Susan Allen, for their constant support, help, and kindness

during my Ph.D.

I would like to dedicate this dissertation to the loving memory of my guardian angel in heaven,

my best friend ever, the best mom one could ever imagine, Maryam Khademi. Maman (as I call

her), I would never reach this point without you being the endless source of love, support, wisdom,

and encouragement in my life. You are my role model and the first person who taught me the

value of constant learning and endeavor. This is for you Maman. I also dedicate this dissertation to

the best ever dad, my pillar, Mohammadhassan Shakarami. Baba (as I call him), nothing is more

satisfying than seeing your smile when I finish this journey. Your words of encouragement and

push for tenacity, when I was leaving the country to begin this journey, would always ring in my

ears. I am deeply grateful for having your unbounded love and support in all ups and downs in my

life.

I would also like to dedicate this dissertation to my loved one, my closet friend, and my hus-

band, Dr. Seyed Ali Mirheidari, who was my inspiration from the beginning to go into the Cyberse-

iv

curity field and was always there for me throughout my doctoral program. I will always remember

the times when he sat there for hours for me to challenge my ideas and be my cheerful supporter

without whom this journey would not be possible. Furthermore, I am grateful to my adorable, one

and only sister, Dr. Mehrnaz Shakarami, who has always been a great source of love and support.

I always remember the advice you gave me when you were four and saw me off to final exams,

telling me to stay confident. Thanks to you, I feel loved and hopeful until the end of the world.

v

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance
with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doc-
toral Dissertation the text of an original paper, or papers, submitted for publication. The Masters
Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements
explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dis-
sertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a
full introduction and literature review, and a final overall conclusion. Additional material (proce-
dural and design data as well as descriptions of equipment) must be provided in sufficient detail to
allow a clear and precise judgment to be made of the importance and originality of the research
reported.

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include
as chapters authentic copies of papers already published, provided these meet type size, margin,
and legibility requirements. In such cases, connecting texts, which provide logical bridges between
different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the
student is required to make an explicit statement in the introductory material to that manuscript
describing the students contribution to the work and acknowledging the contribution of the other
author(s). The signatures of the Supervising Committee which precede all other material in the
Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

May 2022

vi

OPERATION AND ADMINISTRATION OF ACCESS CONTROL

IN IoT ENVIRONMENTS

Mehrnoosh Shakarami, Ph.D.
The University of Texas at San Antonio, 2022

Supervising Professor: Ravi Sandhu, Ph.D.

The Internet of Things (IoT) denotes a network of evolving and expanding number of tech-

nologies embedded in smart things with at least one network interface to interact with the physical

and digital world. IoT has gained widespread use cases in the market, ranging from individual

customers implementing IoT in their personal homes to industry and organizational customers

utilizing IoT in their business environment. The reason for this widespread popularity of IoT in

different application domains include convenience, automation, energy efficiency, and other func-

tionalities which IoT brings to different environments. However, many IoT customers are not

aware of potential direct or indirect security hazards to which they or their environment might be

posed by utilizing unsecured IoT.

The availability and efficiency of security capabilities for IoT environment is often different

from conventional IT environments, because of IoT unique characteristics, including being used

in dynamic environments, limitation in power and computational resources, and relying on hetero-

geneous configurable firmware/platforms. Therefore, providing appropriate security mechanisms

for IoT application environments gained momentum in both academic and industry communities.

One of the most important security concerns in IoT is access control which is still open to novel

and effective solutions. In order to design an appropriate access control approach for an IoT en-

vironment, the distinct specification and requirements of that environment have to be considered.

Although general requirements for designing appropriate access control solutions for IoT applica-

tions have been stated in the literature as being scalable, dynamic, interoperable, context-aware,

fine-gained, etc., these requirements may be of different priorities for different IoT environments.

Therefore, a single access control solution cannot cater to various IoT applications because of their

vii

different requirements and characteristics.

In this dissertation, we focus on smart home IoT as a prevailing IoT application domain which

has unique characteristics. Home IoT environment may include different IoT devices shared among

different users. There are complex social relationships among home IoT users, including parents,

kids, babysitters, visitors, etc., which offers different threat models. Moreover, a smart home

environment might be extended over time through adding new IoT devices to the house by the

homeowner. Home IoT devices are probably produced by different vendors, therefore relying on

different platforms. Nevertheless, we need different home IoT devices to be interoperable to fa-

cilitate home automation. In terms of access control requirements, some of them are of more

importance than others. As an example, it is more essential for an control solution in the smart

home to be fine-grained rather than being scalable. These especial characteristics and authoriza-

tion requirements call for tailored access control solutions to be designed for smart home IoT

environments. Surprisingly, little attention has been paid to access control specification in smart

home IoT.

In this dissertation, we investigate three major access control-related topics which affect or

directly provide authorization in the home IoT environment. First topic is concerned with the

problem of inconsistency which is defined as provision of outdated authorization information to

the decision point which may lead to access violation. Due to intermittent Internet connection

and limited storage space of home IoT devices, required authorization information might not be

available in real time. So, there is an increased risk of making access control decisions based on

outdated information. This problem may arise in any attribute-based access control environment

in which attributes are provided incrementally to the decision point. We investigate this problem

in general, interpreted with use cases in a smart home IoT environment.

Another overlooked area in smart home IoT environments is administration of access while

overall system security is crucially dependent on both administrative and operational authorization

models. Since home users are usually not IT experts and are less likely to spend time to learn

complex management interfaces, administration of access in smart home IoT turns is particularly

viii

problematic. In this dissertation, we propose an administrative access control model for a smart

home IoT considering its specific dynamics and characteristics, which is backed up by a proof-of-

concept implementation.

Finally, we take a first step towards addressing one of the most unique and novel requisites

toward realization of smart home IoT automation, which has received surprisingly little attention so

far. A holistic view of home automation demands specific access control specifications to facilitate

inter-device interactions. In this dissertation, we propose a novel authorization framework based

on attribute-based access control which includes access control model specification, enforcement

architecture and a proof-of-concept implementation. The proposed model is designed to regulate

device-to-device inter-communications in a smart home IoT environment. We regard our solution

to be a first step towards providing more comprehensive access control approaches pertinent to the

interoperable IoT requirements.

Some future directions and research agenda are discussed in the conclusions of this disserta-

tion.

ix

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vii

List of Tables . xiv

List of Figures . xv

Chapter 1: Introduction . 1

1.1 Motivation . 4

1.2 Problem Statement and Solution Approach . 7

1.3 Thesis Statements . 8

1.4 Scope and Assumptions . 8

1.5 Summary of Contributions . 10

1.6 Organization of Dissertation . 12

Chapter 2: Background and Literature Review . 13

2.1 Safety and Consistency Problem . 13

2.1.1 Lee-Winslett Safety and Consistency in Trust Negotiation Systems 15

2.2 IoT Access Control Models . 17

2.2.1 EGRBAC: Extended Generalized RBAC for Smart Home IoT 18

2.2.2 Blockchain-Based Access Control in IoT 21

2.3 Device-to-Device Communication in IoT Environments 27

Chapter 3: Safety and Consistency of Subject Attributes in Distributed ABAC Environ-

ments: A Smart Home Use Case . 31

3.1 Motivation . 32

x

3.2 Safety and Consistency of Subject Attributes for Attribute-Based Pre-

Authorization Systems . 33

3.2.1 Problem Statement and System Assumptions 34

3.2.2 Consistency Levels . 36

3.3 Refresh Instead of Revoke Enhances Safety and Availability: A Formal Analysis . 45

3.3.1 Problem Statement and System Assumptions 46

3.3.2 Consistency Levels . 49

3.3.3 Forward-looking Consistency . 54

3.3.4 Smart home Use Case . 56

3.4 Safety and Consistency of Mutable Attributes Using Quotas: A Formal Analysis . . 57

3.4.1 Problem Statement and System Assumptions 58

3.4.2 Use Case Scenarios . 60

3.4.3 Consistency Levels for Distributed Quota-Based Distribution Methods . . . 65

3.4.4 Formal Specification of Consistency Levels 67

3.4.5 Smart Home Use Case . 72

3.5 Discussion: Model Properties and Limitations . 75

3.5.1 Safety and Consistency of Subject Attributes for Attribute-Based Pre-

Authorization Systems . 75

3.5.2 Refresh Instead of Revoke Enhances Safety and Availability 76

3.5.3 Safety and Consistency of Mutable Attributes Using Quotas 77

Chapter 4: User-to-Device Administration of Access in Smart Home IoT Environments 78

4.1 Role-Based Administration of Role-Based Smart Home IoT 78

4.1.1 Motivation . 79

4.1.2 An RBAC Administrative Model for Smart Home IoT 80

4.1.3 Use Case Definition . 86

4.1.4 Administrative Model Extension . 91

4.2 Blockchain-Based Administration of Access in Smart Home IoT 95

xi

4.2.1 Problem Statement and Motivation . 96

4.2.2 Blockchain For Access Control . 98

4.2.3 PEI: Underlying Administrative Policy 100

4.2.4 PEI: Enforcement Architecture . 102

4.2.5 Sequence Diagram . 105

4.2.6 PEI: Implementation . 107

4.3 Discussion: Model/Architecture Properties and Limitations 112

Chapter 5: Device-to-Device Access Control for IoT Collaboration in Smart Home Envi-

ronments . 116

5.1 Motivation . 117

5.2 Message-Based D2D ABAC Authorization Model 119

5.2.1 Conceptual Model . 120

5.2.2 Formal Model . 121

5.2.3 Smart Home Use Case . 124

5.2.4 Threat Model . 127

5.3 Scenario-Based D2D ABAC Authorization Model 129

5.3.1 Conceptual Model . 129

5.3.2 Formal Model . 132

5.3.3 Smart Home Use Case . 135

5.4 Enforcement Architecture . 141

5.5 Implementation . 143

5.5.1 Experiment Setup . 143

5.5.2 Implementation Results . 143

5.6 Discussion: Model/Architecture Properties and Limitations 145

Chapter 6: Conclusion and Future Work . 147

6.1 Summary . 147

xii

6.2 Future Work . 148

Bibliography . 151

Vita

xiii

LIST OF TABLES

2.1 EGRBAC Model Formalization [24] . 20

3.1 Table of Symbols . 34

3.2 Summary Table of Symbols . 46

3.3 Summary Table of Symbols . 67

3.4 Centralized User-Based Quota Management: Smart Home Use Case 73

4.1 Administrative Model Formalization . 84

4.2 Operational Use Case . 88

4.3 Administrative Use Case . 90

4.4 Extended Administrative Model Formalization 94

4.5 Statistical Analysis Results . 110

5.1 Message-Based ABAC Model Formalization 122

5.2 Message-Based D2D Access Control: Smart Home Use Case 125

5.3 Scenario-Based D2D Access Control Model 133

5.4 Scenario-Based D2D Model: Smart Home Use Case 137

5.5 Full Experiment and Device State Update Statistics. 143

xiv

LIST OF FIGURES

1.1 Overview of Contributions . 10

2.1 Lee-Winslett Proposed Consistency Levels 15

2.2 Adopted Operational Access Control Model for Smart Home IoT (EGR-

BAC) [24] . 18

2.3 Access to Ethereum Network via Interface to a Node, taken from [2] 21

2.4 Whether a Blockchain is the Appropriate Technical Solution for Your Prob-

lem, taken from [205] . 24

3.1 (a) Our consistency levels (b) LW consistency levels. Equivalence is color

coded. 37

3.2 Incremental Consistency with Unrestricted Decision Time 38

3.3 Internal Consistency . 39

3.4 Incremental Consistency with Restricted Decision Time 40

3.5 Interval Consistency . 42

3.6 Forward-looking Consistency . 44

3.7 (a) Revocation vs. Refresh (b) Comparing Grant vs. Deny 46

3.8 Interval Consistency . 51

3.9 Interval Consistency with Request Time 52

3.10 Forward Looking consistency . 54

3.11 Smart Home Use Case: Forward-Looking Freshness Required 55

3.12 Centralized Approach to Manage Global Limit: a) service-based b) user-

based . 61

3.13 Distributed Approach to Manage Global Limit: a) service-based b) user-based 63

3.14 Revocation vs. Refresh [183] . 65

3.15 Lifetime Overlap Consistency Level . 69

xv

3.16 Freshness Overlap Consistency Level . 70

3.17 Start Time Has Fallen After Request Time 71

3.18 Smart Home Use Case: Freshness Overlap Required 74

4.1 Administrative Model . 83

4.2 Administrative Units . 89

4.3 Extended Administrative Model for Managing both RPDRA and PDRA . . 92

4.4 Whether a Blockchain is the Appropriate Technical Solution for Your Prob-

lem [205] . 98

4.5 Blockchain-Based Enforcement Architecture for Administration of Access

in IoT Smart Home Environment . 102

4.6 Reference Example . 105

4.7 Time-Based Flow of Administration of Access Based On Proposed Archi-

tecture . 106

4.8 Statistical Summary of Gas Used . 107

4.9 Admin Timer . 107

4.10 Full Timer . 107

5.1 Device-to-Device ABAC Model . 119

5.2 Smart Home Use Case for Device-to-Device Communication 124

5.3 Device-to-Device Scenario-Driven ABAC Model 130

5.4 Smart Home Use Case for Scenario-Driven Device-to-Device Communi-

cation . 136

5.5 Device-to-Device Architecture . 141

5.6 Time per Action on Greengrass . 144

xvi

Chapter 1: INTRODUCTION

Internet of things (IoT) is a trending technology of connected embedded objects, a.k.a things, that

can sense, communicate, actuate and be accessed through a communication channel. In 2011, IoT

was identified in the Gartner hype cycle, which represents the emergence, peak and adoption of

innovative technologies [12]. IoT paradigm as a collective environment of cyber-physical devices,

people and applications gained ground as a technology in which information exchange happens

to provide services. This hyper-connected digital ecosystem is quickly becoming a reality and is

gradually changing people’s everyday lives. While connected IoT environments benefit individ-

uals, society and industry through facilitating automation, convenience and efficiency, they also

bring new security and privacy challenges. These challenges are exacerbated by lack of standards

specifically designed for IoT devices which are typically resource-constrained and rely on hetero-

geneous technologies [80].

According to OWASP IoT Project [14], insecure access to web, APIs, and mobile interfaces

are among top-10 IoT security vulnerabilities. Nonetheless, access control is a missing compo-

nent in many commercial IoT frameworks. Most IoT frameworks enforce coarse-grained access

control policies, for example, Nest thermostat grants access to all available functionalities of the

device or none. Another example is Apple Home Kit, which provides view-only, local, or remote

control as the access control options. Samsung SmartThings has slightly finer-grained access poli-

cies to access IoT services, however it needs the location of users to be revealed, which violates

users’ privacy. There are numerous examples of inappropriate access control for different IoT

devices, which lead to safety and privacy violation of their users. Remote hacking and control-

ling of Internet-based baby monitoring systems in 2015 [191] is just one example which resulted

from over-privileged access granted by its authorization framework. In this context, devising and

enforcing appropriate authorization frameworks for IoT environments is of utmost importance to

address current authorization frameworks limitations.

Different IoT-enabled smart environments include smart cities, smart homes, smart grid, smart

1

buildings, smart health, smart transport and smart industry [181]. Each IoT smart environment

has its specific consumer group with different interests, priorities and regulations depending on

the criticality of provided functionalities by IoT devices in that environment [130]. Similarly,

the key requirements of scalability, interoperability, availability, performance and reliability, and

their attendant tradeoffs, are different in each smart environment. Each environment has different

characteristics, therefore different requirements. For example scalability is more important in a

smart transportation system to which many vehicles may join at any time. Performance, including

minimizing the communication and computation overheads, is critical for applications like patient

monitoring and smart cars. As another example, an adequate level of reliability and availability is

critical in a smart health environment, while occasional unavailability/failure might be tolerable in

a smart home [160]. On the other hand, interoperability as seamless integration of heterogeneous

IoT devices, is remarkable for all IoT applications. Therefore, a single solution cannot cater to

IoT applications in various fields due to different requirements of each. In a similar way, each

IoT environment demands appropriate access control framework designed to address its particular

requirements. In this research, we studied three major access control-related matters which affect

or directly provide authorization in IoT environments.

First, we investigate the safety and consistency issues in distributed Attribute-Based Access

Control (ABAC) environments. ABAC is one of the most popular access control approaches for

designing IoT access control models due to its flexibility, granularity, expressiveness and context-

awareness. ABAC relies on attribute values of identities, including subjects, objects, environment

(context) and actions, to define access control policies. Attribute values are represented in cre-

dentials which have been properly bound to their holders’ identities. However, credentials might

be updated or revoked during their lifetime. So, if any access decision would be made based on

outdated attribute values in changed/revoked credentials, it would be incorrect. We call this safety

and consistency problem. This problem may arise in any distributed ABAC environment in which

attribute values are provided through multiple, distributed authorities. In an IoT environment, with

dynamicity as one of its inherent characteristics, these changes might be frequent. Hence, any

2

changes in identities’ attributes should be propagated in a timely manner to avoid incorrect access

penalties which may happen as a result of safety and consistency problem. To serve this purpose

we formalize different consistency levels for attributes in an ABAC environment to mitigate this

problem as far as possible.

Second, we narrow our focus to smart home IoT. As previously stated, each IoT environment

has its own particular requirements for access control. We choose smart home IoT as our scope

in this dissertation due to its important role in people’s everyday lives which is growing, it be-

ing susceptible to specific security vulnerabilities due to its distinctive features, and being less

investigated compared to other IoT application domains. We present an administrative Role-Based

Access Control (RBAC) model to manage access authorizations in a smart home IoT environment.

We recognize access administration in a smart home to be a particular problem as home users

lack the expertise of a typical system administrator and are unlikely to spend much time learning

complex interfaces to assign/revoke access rights or auditing the access logs.

Finally, we propose a decentralized, ledger-based architecture along with a proof-of-concept

implementation on Ethereum blockchain using smart contracts. Our implementation results

demonstrate that using blockchain for administrative access control is viable, while is not yet

appropriate for operational access control, despite the rising hype around blockchain technology

and its utilization in the access control domain. Although our selected underlying operational ac-

cess control is a RBAC model, our proposed administrative model could be utilized for access

management of any underlying operational model, regardless of it being RBAC or used any other

access control paradigm. Moreover, the proposed model could be simply extended to manage more

sophisticated access control models with similar dynamics, e.g., smart buildings.

Since IoT has been envisioned as a network of connected IoT devices, device-to-device com-

munication is essential to realize full benefits of the IoT ecosystem. There are situations in which

co-located devices need to interoperate using heterogeneous communication technologies, which

makes it challenging. Extensive efforts are going on to provide direct intelligent communication

among IoT devices, however there is still no standard or consensus on any paradigm. Access con-

3

trol as the backbone for any information system, is of utmost importance to be addressed in order

to facilitate device-to-device communications. Surprisingly there is no previous access control

specification that was provided to regulate device-to-device access. Third proposal in this research

is to propose an access control model for the first time for regulating device-to-device access in the

smart home IoT environment. We formulate an access control model which governs authorized

flow of information among home IoT devices using Attribute-Based Access Control (ABAC). Our

approach relies on the message-passing paradigm for regulating access in device-to-device inter-

actions. Furthermore, we introduce the concept of scenarios which reflects a chain of events in

the smart home context. We develop a scenario-driven attribute-based access control which also

enables conflict resolution via defining partially ordered sets of scenarios using priorities. The

viability of the proposed approach is substantiated via a formal model and an enforcement archi-

tecture, backed up by a proof-of-concept implementation which affirms our model is quite efficient.

1.1 Motivation

Similar to any information system, IoT environments need to ensure the security and privacy of

data and resources. Due to the dynamic nature of IoT environments, in which users, IoT de-

vices, and IoT applications are actively interacting with each other, it calls for tailored security and

privacy solutions to provide required privacy and security. Different application domains and envi-

ronments demand for different access control models and mechanisms. Similarly, IoT applications

and environments which are heterogeneous, dynamic and resource-constrained and also sometimes

demand for decentralization, privacy and auditability, will ask for tailored security mechanisms to

tackle their specific requirements. Access control, as the backbone of information security, can

benefit IoT environments via actively monitoring access to resources and protecting them against

unauthorized access. This research deals with a very specific application of IoT—the smart home

IoT.

According to Statista research, the number of active households in the smart home market

would exceed 84 million by 2026 [17]. While bringing convenience to people’s lives, usage and

4

application of IoT in a smart home, a.k.a home automation, introduces new security challenges.

There is a growing research on individual parts of smart home components. For instance, there

are studies on vulnerabilities of communication protocols [78, 166], device firmware security [95,

122], and home automation applications [47, 74, 118]. In this research we focus on securing smart

home IoT through provision of required authorization settings, specifically access control models,

which is surprisingly not intensively investigated [91]. We recognize smart home IoT unique

characteristics necessitate oriented authorization models to be particularly designed. These unique

characteristics include diversity and heterogeneity of utilized IoT devices, mixed ownership of

devices, possible conflicts of interests, and lack of a dedicated expert administrator [108].

Attribute-Based Access Control (ABAC) is a widely adopted model in IoT environments be-

cause of its flexibility and expressiveness. Incremental assembly of required subject attributes with

different validity periods creates potential for inconsistency leading to incorrect access decisions.

Violation by relying on outdated validation information is a common problem in access control

enforcement. Following example showcases how consistency problem in a smart home environ-

ment may lead to access violation. Consider a smart lock with an access control system which

is deployed on the vendor’s private cloud. Smart lock would authenticate and pair with a user’s

mobile in its Bluetooth range, then receive the status of that specific user’s access key from the

cloud. This key status would be also saved in the local database of the lock. Now imagine a sce-

nario in which a user’s key has been revoked by the owner. This change would be reflected in

the local database of the smart lock, only when that specific user interacts with the lock through

his/her smartphone. A malicious user whose key has been revoked by the owner, can disconnect

her phone from the Internet and get into Bluetooth range of the lock. Since the lock cannot connect

to its cloud through the user’s phone, it would rely on the user’s key information stored in its local

database and grant access to that user, while it is supposed to deny it. This problem arises because

the smart lock is relying on outdated keys, which we call safety and consistency problem. This

situation has been referred to as state consistency attack in [97]. Similar access violations may

happen due to provision of stale/outdated attributes to the decision point when access decision is

5

made based on provided keys/attribute certificates. We investigate this problem in detail in this

dissertation and propose different levels of consistency to provide the decision point with the most

recent status of subjects’ attributes. To avoid safety and consistency problem, which is caused by

relying on expired/revoked credentials, we proposed multiple increasingly stringent consistency

specifications, along with more detailed smart home IoT use cases.

The other challenge in the area of IoT access control is about designing appropriate access con-

trol models. Despite many efforts which have been done toward proposing access control methods

for IoT environments in general [157, 160], there are only a few works which propose access con-

trol models. Specifically, smart home IoT as one of the most popular IoT application domains has

been surprisingly overlooked [214]. Besides, the few proposals in this area are mostly concentrated

on operational access control models [24]. However, the overall system’s security mainly depends

on both operational and administrative access control models. Administrative models facilitate

management of (mostly configuration) changes in the underlying operational models. In this dis-

sertation, we have developed a RBAC administrative model for the smart home IoT environment,

with its enforcement architecture relying on blockchain. The model has been backed up by a smart

home IoT proof-of-concept implementation.

Last but not least, we noticed existing studies are mostly focused on permission models and au-

thorization in user-centric modes [24,74,118] and concerned with user-to-device communications,

protecting IoT devices from unauthorized users’ access. Nonetheless, the potential security viola-

tions which may happen in device-to-device interactions are largely uninvestigated [218]. In order

to realize the vision of IoT, as a network of connected smart things, it is required to consider the

environments with ongoing device-to-device communications, without human intervention. Smart

home IoT is no exception and scenarios of device-to-device interactions are inevitable for real-life

home automation. To this end, we embark on proposing the first device-to-device access control

model in a smart home IoT environment. In this dissertation, we propose a novel device-to-device

access control model and its extension to scenario-driven attribute-based access control for device-

to-device interactions in a smart home IoT. Our approach relies on message passing as the paradigm

6

for device-to-device interactions. Formal specification of the proposed models, along with smart

home use case scenarios, its enforcement architecture and a proof-of-concept implementation have

also been provided.

1.2 Problem Statement and Solution Approach

There is a rich body of research on access control in different IoT application domains, as unau-

thorized access to the information flow in IoT environment may impose critical security issues in

those environments [1, 37, 133, 148, 157, 160]. In a smart home environment, as the area of our

focus, there are a few access control models proposed based on RBAC [24] or ABAC [26], while

some researchers believe a hybrid approach would be the most appropriate to govern the access in

a smart home [26]. Many researchers considered ABAC to be more appropriate for generation of

access control policy in IoT environments, however less attention has been paid to the consistency

problem which may arise in ABAC environments due to relying on credentials for attribute value

provisions. Another overlooked area is the access management regardless of the access control

model in the underlying operational environment. Most importantly, there is no effort in the access

control model provisioning access in device-to-device communication. Nonetheless, the internet

of connected heterogeneous devices (IoT) would remain a vision rather than a reality until this

important area remains disregarded.

In order to investigate above-mentioned problems in access control for smart home IoT we

first look into the consistency problem, in order to provide a formal analysis of the problem and

provide administrators with different levels of safety and consistency which could be acquired in

each level. Then we will focus on administration of access in the smart home IoT environment. We

consider operational models to be dynamic as we are aiming for a smart home IoT environment

and recognize the need to develop administrative models in order to govern access changes in

such a system. A RBAC administrative model will be provided to address this need with a smart

home use case, however scalability and flexibility to be used in other distributed environments has

been taken into account. To provide a holistic perspective toward home automation, we consider

7

heterogeneous IoT devices at home as an ecosystem which demands for specific device-to-device

access control models to be designed for it. We will propose an access control model which is

proposed to regulate the access and authorize communications among IoT devices in a smart home

environment.

1.3 Thesis Statements

1. The established paradigm of role-based access control can be utilized for access adminis-

tration of user-to-device in corresponding operational access control models, which could

be based on either role-based or attribute-based access control.

2. If the operational authorization is based on attribute-based access control, a detailed analy-

sis of required consistency for both mutable and immutable attribute values can ultimately

benefit the overall safety of the system by providing a decision point with most recent values

of attribute credentials.

3. The established paradigm of attribute-based access control can be adapted and extended to

provide a device-to-device access control approach towards considering heterogeneous IoT

devices in a smart home as an ecosystem with intercommunication.

1.4 Scope and Assumptions

The scope of this dissertation is to first investigate safety and consistency problem in distributed

attribute-based access control environments, for both mutable and immutable attributes. We pro-

pose using refresh instead of revocation check to be applied, specially for mutable attributes. Then

a role-based access control administrative model is introduced for managing assignments in the

underlying operational model for a smart home IoT. Then a novel device-to-device attribute-based

access control model is proposed for the first time to regulate device inter-communications in an

automated smart home IoT. Followings are assumptions made in different sections of this disserta-

tion:

8

1. We examine the safety and consistency problem from the perspective of a single access

decision point within a larger distributed attribute-based access control authorization system.

We assume required credentials for evaluating a policy would be collected incrementally and

lifetimes of different credentials might not be the same.

2. In attribute-based access control, the value of an attribute of a subject is represented by

a credential which must be coupled to a specific subject, which is typically achieved by

embedding the subject’s identity in the credential. We assume the identity of the subject was

authenticated before the credential is coupled with that subject.

3. About consistency levels in attribute-based access control, we assume that the policy and

object/environment attributes are known with high assurance at the decision point, which

is reasonable since the decision and enforcement points are typically co-located with the

object’s custodian who maintains these values. This reduces the problem to safety and con-

sistency of subject attributes.

4. In order to achieve consistency levels for mutable attributes, we utilize a quota-based ap-

proach and assume each mutable attribute has a global limit known to its corresponding

attribute authority and can be managed in a centralized way.

5. For administration of access, our model specifically addresses the administration of EGR-

BAC [24]. However, it could be simply extended to manage other more sophisticated access

control models with similar dynamics. EGRBAC is chosen not as a de-facto operational

model, but because it has the desired properties for a smart home IoT operational access

control.

6. Our proposed administrative model is restricted to manage user-to-device assignments. We

recognize adding a new user to be an infrequent event. So, we consider this case orthogonal

to the central focus of this research and its administration would be centralized, say, in the

homeowner.

9

7. For proposing a device-to-device access control model, as many IoT devices are not IP-

enabled, using a gateway (GW) node in the network is inevitable [34]. We assume the gate-

way node in our model is trustworthy and available, which is a common assumption [156].

Attacker is considered to be an outsider to the network with the goal of obtaining illegitimate

access to available functionalities/operations of smart home IoT devices.

1.5 Summary of Contributions

Figure 1.1: Overview of Contributions

Figure 1.1 depicts an overview of contributions in this dissertation, which are described as

follows:

• To address safety and consistency problem in distributed ABAC environments, we propose

a set of five consistency levels in this research which are partially ordered in increasing

strictness. Formal specification of each of our consistency levels is defined and we identify

the properties guaranteed by each level. Implications of proposed consistency levels in a

10

smart home IoT environment have been provided as well.

• We develop a formal framework for safety, availability and consistency problems of ABAC

systems via introducing the refresh scenario instead of the traditional revocation check. The

enhanced possibility of getting a new value rather than an invalid response enhances safety

and availability. We also define the concept of being satisfactory for an attribute value with

respect to a policy, which is first introduced in our work to the best of our knowledge. Rely-

ing on the history of satisfactory attribute values, we introduce additional flexibility to grant

access to authorized users. A smart home IoT use case is also provided.

• Safety and consistency in the context of mutable subject attributes is also investigated in this

research. We develop a formal characterization of required consistency using refresh in this

context. This work has also been consolidated with a smart home IoT use case.

• In this dissertation, we have developed a corresponding RBAC administrative model for

EGRBAC [24] (enhanced generalized role-based access control), the access control model

which we chose at the operational level of access control in a smart home IoT.

• We take advantage of blockchain to enforce our proposed administrative model, therefore

make it reliable, auditable, and scalable, so it could be scaled for administration in environ-

ments with similar dynamics, e.g. smart buildings. We opted for Ethereum blockchain and

designed the policy enforcement model and implemented it on top of Ethereum. Our imple-

mentation results are reassuring that although the use of blockchain for operational access

control is not promising, despite the hype around using blockchain for operational access

control, an administrative model could successfully utilize the benefits of blockchain.

• An access control model which governs authorized flow of information among home IoT

devices using Attribute-Based Access Control (ABAC) has been proposed for the first time,

relying on a message passing paradigm.

• We define scenarios as a sequence of messages which is provoked by a trigger, i.e., an event

11

or a set of events in the smart home. By defining priorities among scenarios, we equipped our

proposed model with conflict resolution. Proposed model is backed up by an enforcement

architecture and a proof-of-concept implementation for a smart home IoT use case.

1.6 Organization of Dissertation

The rest of this dissertation is organized as follows. A brief background on safety and consistency

problem in attribute-based access control environments, access control models for user-to-device

access control models, as well as related works in the context of device-to-device communications

are discussed in Chapter 2. Chapter 3 presents proposed consistency levels in distributed attribute-

based access control environments. Using refresh instead of conventional revocation check and its

provision of extra safety and availability has also been discussed. Consistency of the subject’s mu-

table attributes is also deliberated in this chapter. All proposed levels of consistency are followed

by their guaranteed properties and reinforced by smart home use cases. In Chapter 4, we discuss

our proposed administrative model along with its blockchain-based enforcement architecture in.

It further demonstrates the proposed model using a use-case diagram for a smart home use case

and a proof-of-concept implementation. Models characteristics and limitations along with safety

considerations are also discussed. Chapter 5 discusses the novel proposed approach for device-

to-device access control which is an attribute-based access control model relying on a message-

passing paradigm. It also describes the extension of the proposed model to the scenario-driven

access control which handles conflicts in an automated smart home. Properties of the proposed

approach as well as its restrictions are also discussed. This dissertation is concluded in Chapter 6

which summarizes this dissertation’s contributions and discusses future directions of work.

12

Chapter 2: BACKGROUND AND LITERATURE REVIEW

This chapter provides a brief review of the related literature and discusses mostly related works

which are essential to comprehend the rest of this dissertation. We first review access control

models which are more adopted in IoT environments including RBAC and ABAC. EGRBAC is

then discussed as the operational model of our choice for operational access control in smart home

IoT. We also provide a brief overview of blockchain concepts and its application in IoT access

control. Literature review of research works on device-to-device communications is also presented.

Sections of this chapter are arranged based on the sequence of related dissertation chapters.

2.1 Safety and Consistency Problem

Beyond the need to keep the data consistent in open and distributed systems, which has been

discussed in the literature (see for example [19, 36, 88, 154, 192]), there is a crucial requirement

to have access control models relying on the most recent information to grant/deny access to that

data [110]. Many access control models are not completely compatible with distributed systems

in that they are not deployed for such systems in the first place [100]. ABAC is well adjusted to

distributed environments due to its flexibility and granularity. ABAC determines access based on

attributes of subjects, objects and environment evaluated against a policy. These attributes and also

the policy are exposed to change and staleness during the time, which could result in inconsistency.

Ciphertext-Policy Attribute-Based Encryption [48, 49] is broadly applicable in decentralized

multi-authority environments, but presents challenge to handle attribute revocation [176,208–210].

Moreover, it imposes a heavy performance burden which makes it impractical [81]. On the other

hand, delays and staleness of attributes are inherent in every distributed system owing to network

latencies, caching and failures [112]. So, most practical distributed systems try to have a near-

consistent [110] property, which could be interpreted as limiting the exposure of access control

models to stale attributes.

Lee and Winslett propose the first organized work focused on consistency issue in trust nego-

13

tiation, which is described in more details in following section [116]. In another research work on

conversational web services [149], authors build their access control model based on user’s cre-

dentials which relies on the first, most permissive level of consistency introduced in [116]. Authors

simply assume the validity of a credential will last for the whole web service conversation duration.

This, however, may result in granting access based on outdated credentials’ states. Squicciarini et

al. [190], present a protocol which safely performs trust negotiation during distinct negotiation

sessions. Even though the authors put the probability of expired/revoked credentials during negoti-

ation suspensions under consideration, they only mention that a synchronization algorithm would

take care about updating the list of credentials without describing a concrete underlying synchro-

nization scheme.

There is another category of research work which considers policy changes as the main con-

cern. In [81,103,212], authors concentrated specifically on policy consistency in dynamic environ-

ments. They define different variants of proofs of authorizations based on the time when different

queries are checked against policies in a transaction lifetime in a cloud environment. In our re-

search in Chapter 3, we consider policy inconsistency to be out of scope and assume that policy is

known with high assurance at the decision point. This is similar to other research works [117] in

which consistent policy is simply considered as an underlying assumption.

Another closely related research is [111], in which the authors formally specify a set of at-

tributes in linear temporal logic in a Group-based Secure Information Sharing (g-SIS) model to

express freshness of attributes. By proposing different levels of stale-safe property, authors try to

limit unsafe access decisions made based on stale subjects’ and objects’ attributes in a distributed

access control system. This research is very close to the work in [116] in that it tries to regulate

some levels of safety against stale-attribute usage, but with a key difference: authors in [111] built

their g-SIS system based on the assumption that the system should be able to cope with loss of

communication and limit the exposure to the risk only by relying on the latest time the attributes

have known to be valid (refresh time), while in [116], authors focus on the need to obtain the fresh

information about credentials’ states via revocation checks.

14

Figure 2.1: Lee-Winslett Proposed Consistency Levels

Our proposed approach in Chapter 3 differs from fail-secure access control models [199] in that

we assume that we can acquire fresh revocation status of credentials, but fail-secure access control

applies in scenarios in which revocation states cannot be updated or accessed. Our main concern is,

although we checked credentials’ revocation status, provided information might become obsolete

since the last status update. Although our approach depends on revocation status of credentials,

being online is not central to our scheme. We provide different interpretations of proposed levels

in Chapter 3 in scenarios like short-lived credentials where the only possible revocation check time

is the start time of the certificate or credential.

2.1.1 Lee-Winslett Safety and Consistency in Trust Negotiation Systems

The closest research to our work is presented in [116] by Lee and Winslett (hereafter we call it

LW), in which authors tried to limit the unexpected and unsafe behavior of trust negotiation and

distributed proving authorization systems by proposing four levels of consistency. Trust negoti-

ation systems are a specific type of distributed proof systems [114] which are appropriate when

privacy is a major concern [151]. In trust negotiation systems, both parties need to incrementally

establish trust to achieve desired degree of assurance, while revealing no more than necessary

information. So, collection of credentials would inevitably span over time. The authors con-

sidered each credential as a piece of evidence needed to satisfy a given policy, collected over a

non-instantaneous period of time. They considered credentials as small snapshots of the whole

15

network state which cannot be considered a precise snapshot of the global network. Although trust

negotiation is not a prerequisite for disclosure of attributes in our proposals in Chapter 3, [116] is

the closest work to us.

LW provides notions of consistency levels leveraging the temporal constraints on timing and

sequencing of checks for certificate issuance/revocation and demonstrate how failure in satisfaction

of these constraints could violate the basic safety requirements of the system. We recast the work

of [116] by eliminating the negotiation aspects and developing different levels of consistency with

strict subset property among levels. The authors define an entity’s view of the system based on

collected credentials’ states and propose four levels of view consistency including incremental, in-

ternal, endpoint and interval consistency as presented in Figure 2.1. The first and most permissive

level provides incrementally consistent view, in which it is sufficient to present valid credentials to

satisfy each clause of the policy. The proposed credentials should have been valid at the receive

time.

Incremental consistency does not guarantee simultaneous validity of different credentials and

it, also, might be in conflict with separation of duties principle. So, the authors propose the sec-

ond level of consistency which is called internal. Internal consistency guarantees all relevant

credentials to the authorization decision were valid simultaneously at some point in time during

the authorization protocol, but not at the moment the policy is decided to be satisfied. To afford

the policy evaluator with a stronger guarantee about authorization decision, authors provide two

stronger consistency levels: endpoint and internal consistency. These two levels provide a formal

assurance that not only credentials are all valid at some point during authorization, but also they

are all valid at the endpoint of authorization protocol.

Lee and Winslett extend the proof construction in authorization systems to the context-sensitive

environments in which parts of the proof tree are required to remain hidden due to privacy con-

cerns [115]. The proposed framework relies on signed assertions instead of certificates issued by

certificate authorities (CAs). The authors show how a distributed proof system can sample the

simultaneous truth of facts while conforming to integrity and confidentiality policies.

16

2.2 IoT Access Control Models

IoT application contains its utilization in different environments containing home, industry, health,

etc. Despite increasing adoption and tendency of customers to use connected IoT applications,

in which different IoT devices can connect and communicate, yet the comfortable features of an

interconnected environment, comes with security challenges. There is a rich body of research on

security of IoT [27, 29, 90, 131, 211]. Access control, as a backbone for ensuring security in any

information system, has gained a lot of attention in IoT applications [1, 37, 133, 148, 158, 160].

Unauthorized access to the information flow in IoT environments may impose critical safety and

privacy issues to IoT users.

Besides specific requirements for access control which is common in all IoT application do-

mains, such as fine granularity, context-awareness, dynamicity and lightweight-ness, each require-

ment has a different level of importance depending on the application domain in which IoT has

been utilized. As an example, scalability is much more important in industrial IoT than smart

home IoT [160]. As one of the most popular domains of IoT applications, smart home IoT de-

mands for specific access control models tailored for it [58, 92, 106, 193, 202, 214].

A context-sensitive access control approach for a smart home has been proposed in [69] in

which policies are focused to control access to users’ personally identifiable information (PII).

Authors use semantic network knowledge graphs to define the context in a smart home environ-

ment and supplement their work with an anomaly detection sub-system to inform users about

suspicious activities. Another related research is reported in [38] in which stand-alone ABAC

model was proposed for smart home environments, considering the NIST Next Generation Ac-

cess Control (NGAC) [75] specifications to specify ABAC requirements. Both of these works

lack in presenting a specific operational model for their proposed approaches. Ruledger [72] is a

ledger-based framework which considers D2D interactions but the goal is to ensure rule integrity

in trigger-action IoT platforms, not access control.

Some researchers relied on Attribute-Based Access Control (ABAC) paradigm because of pro-

vided flexibility and granularity, suggesting authorization models to govern user to device access

17

Figure 2.2: Adopted Operational Access Control Model for Smart Home IoT (EGRBAC) [24]

in smart home applications [25,26,67]. Bakir et al. [31] proposed a capability-based authorization

scheme, namely CAPLet, utilizing Capability-Based Access Control for resource-restricted IoT

deployments. Another group of researchers rely on Role-Based Access Control (RBAC), which

has been reported the easiest for home users to adopt with [187], and easier to manage [22, 214].

EGRBAC [24] is an RBAC fine-grained model for authorization of user-to-device communications

in smart home, which we adopt in this research as the operational model, based on which we build

an administrative framework (including policy model, enforcement architecture and a proof-of-

concept implementation). This model is briefly described as follows.

2.2.1 EGRBAC: Extended Generalized RBAC for Smart Home IoT

EGRBAC has been proposed by Ameer et. al. [24], to provide a fine-grained access control model

for smart home environments. EGRBAC takes into account requirements and challenges of the

access control in a smart home environment and enhances over traditional RBAC in order to satisfy

the required properties. These characteristics along with a formal model proposed in the work

inspired us to consider it as our operational model of choice. Authors provide a finer grained

RBAC model, compared to existing models, in that the scope of control has been defined to be at

18

device-operation level. Instead, other RBAC models in the same context commonly provide the

device level granularity of control. Even with one IoT device in the smart home, some dynamics

are essential to be considered. It is quite possible for access objects to be added/deleted to the

smart home environment. Moreover, in many situations it is a requisite to provide permission-

level access instead of it being at device level [105, 194]. A device (D) could be any smart

home IoT device like smart security camera, etc. An operation (OP) is an action specified by

the manufacturer, which could be done by an IoT device, such as recording. Each permission

(P)in EGRBAC is a subset of D × OP . Different Device Roles (DR) have been created based

on categorizing available manufacturer-specified operations in a device. It is also possible to put

pairs of (device, operation) in the same (DR) for different devices. Then, permissions would be

assigned to device roles instead of devices themselves, making the model permission-centric. As a

result, it is possible in EGRBAC to grant partial access to a device for different users, for instance a

DRcalled Dangerous Devices could contain on/off operation for the oven as well as turning smoke

detector on/off. It is possible to delimit user’s permission in the system based on their specific

permissions on determined device roles.

There are many situations in which it would not be reasonable to make access control deci-

sions only based on roles assigned to individuals. Instead, other contextual information such as

environmental conditions and location should be involved in access control. EGRBAC captures

environmental context such as time and location using Environment Conditions (EC) which sub-

sequently would activate/deactivate Environment Roles (ER). For instance, light sensors would

capture the daylight and determine whether it is daytime or nighttime. Multiple subsets of EC s

could be grouped together as an ER, which would later be coupled by regular roles to create Role

Pairs (RP). EGRBAC assigns Device Roles (DR) to Role Pairs (RP) to establish the access policy,

by defining RPDRA relationship. EGRBAC operational model has been depicted in Figure 2.2.

Formal definition of EGRBAC is given in Table 2.1.

In EGRBAC, a user could be assigned to a subset of roles. Then, based on the active roles

in his/her current session and the current environmental context, corresponding role pairs would

19

Table 2.1: EGRBAC Model Formalization [24]

Users, Roles and Sessions
−U,R and S are sets of users, roles and sessions respectively
−UA ⊆ U ×R , many to many users to role assignment (homeowner specified)
−SU ⊆ S × U , many to one sessions to user relation that assigns each session to a single user who
controls the session
−SR ⊆ S × R, many to many session to roles relation that assigns each session to a set of roles that
can change under user control, where (si, rj) ∈ SR ⇒ (∃uk ∈ U)[(si, uk) ∈ SU ∧ (uk, rj) ∈ UA]; by
definition of SU , uk must be unique

Devices, Operations, Permissions and Device Roles
−D,OP, P and DR are sets of devices, operations, permissions and device roles respectively
−P ⊆ D ×OP , every permission is a device, operation pair (device manufacturer specified)
−PDRA ⊆ P ×DR, a many to many permissions to device roles assignment (homeowner specified)

Environment Roles and Environment Conditions
−ER and EC are sets of environment roles and environment conditions respectively
−EA ⊆ 2EC × ER, many to many subsets of environment conditions to environment roles assignment
(homeowner specified)

Role Pairs
−RP ⊆ R × 2ER, a set of role pairs specifying all permissible combinations of a user role and subsets
of environment roles (homeowner specified);
for every rp = (ri, ERj) ∈ RP , let rp.r = ri and rp.ER = ERj

−RPRA ⊆ RP × R, many to one role pairs to role association induced by RP , where RPRA =
{(rpm, rn) | rpm ∈ RP ∧ rpm.r = rn}
−RPEA ⊆ RP × 2ER, many to one environment roles to role pairs association induced by RP , where
RPEA = {(rpm, ERn) | rpm ∈ RP ∧ ERn = rpm.ER}

Role Pair Assignment
−RPDRA ⊆ RP ×DR, many to many role pairs to device roles assignment (homeowner specified)

Check Access Predicate
− The check access predicate takes four inputs: session si, device dj , operation opk and set of active
environment conditions ECl; a session si can access device dj with operation opk when the set of envi-
ronment conditions ECl is active iff the following predicate is true:
(∃(rpm, drn) ∈ RPDRA)
[((dj , opk), drn) ∈ PDRA ∧
(si, rpm.r) ∈ SR ∧
rpm.ER ⊆ {er ∈ ER | (∃EC ′

l ⊆ ECl) [(EC ′
l , er) ∈ EA]}]

20

Figure 2.3: Access to Ethereum Network via Interface to a Node, taken from [2]

be activated. So, the user would be granted with the permissions available to the current device

roles which are assigned that role pairs for the duration of that session. EGRBAC is an operational

model of our choice upon which we would build our administrative model, in that its provided

granularity along with context-awareness make it a suitable choice for access control in smart

home environments. However, this model is limited to govern only user-to-device accesses and

leaves device-to-device access control for future investigation. Correspondingly, the proposed

administration model in this dissertation would also inherit the same constraint.

2.2.2 Blockchain-Based Access Control in IoT

Blockchain Preliminaries

Blockchian is well known as an underlying technology for Bitcoin which has been introduced

in Satoshi Nakamoto’s original whitepaper in 2008 [134]. While there is no specific word of

blockchain in the paper, it describes the technology as a series of data blocks which are crypto-

graphically chained together. Nowadays Blockchain is mostly known as a distributed, decentral-

ized ledger in which blocks of transactions are linked together cryptographically by maintaining a

21

peer to peer network. As there is no single point of trust/failure, the participating peers usually have

to solve a complicated problem to reach consensus with each other and vote to add a new block to

the chain in a process which is called mining in technical vernacular and the participating nodes

are known as miners. Different voting systems have been developed which are usually referred to

as consensus algorithms. In order to avoid malicious actors, there are different incentives provided

to guarantee truthfulness, such as awarding voting with the majority and punishing voting against

the majority. Finally, this game-theoretical equilibrium would end up adding a block to the chain

which is authentic. Therefore, without the presence of any central authorities, untrusted parties can

share a consensus view.

Although Bitcoin was the first application of blockchain, different companies started to develop

beyond Bitcoin. There are different classifications of blockchain technology. The basic classifica-

tion would be public and private blockchains, which are distinguished based on who is authorized

to take part in the network. In public blockchain anyone can join and participate in the blockchain,

i.e. see/confirm the transactions and mining blocks. Private blockchains, on the other hand, need

to be approved in order to join the blockchain by the specific person or based on a set of rules.

Once a new participant joins, its role would indicate what it can do in maintaining the blockchain.

Another basic division that is made between different types of blockchain is that of permissioned

and permissionless blockchain. Permissionless blockchains need no permission to participate in

the network, however in permissioned blockchains a party needs to be somehow privileged to play

a role. These definitions are far from clear as sometimes public and permissionless blockchains

are considered the same, as private and permissioned blockchain.

In this dissertation, we opted for Ethereum blockchain as our enforcement tool of our proposed

administrative model for smart home IoT in Chapter 4. Ethereum is a decentralized and public

blockchain which is essentially permissionless which is mostly actively used blockchain based

on Bloomberg 1. Microsoft adopted Ethereum as the core of its Blockchain-as-a-Service (BaaS)

1https://www.bloomberg.com/news/articles/2020-11-23/ethereum-races-clock-to-collect-enough-coins-for-huge-
upgrade

22

on the Azure cloud computing environment 2, however Ethereum could be run in any distributed

environment. As it is permissionless, anyone would be able to spin up a node, join the Ethereum

network and broadcast transactions or mine blocks. Decentralized nodes constitute the Ethereum

P2P network.

Unlike permissioned blockchain, there is not a central authority available on the network level

in Ethereum. However, it is possible to define rules on what each person would be permitted to do.

Ethereum is featuring smart contract functionality which is used to define rules and penalties and

enforces those obligations. Ethereum smart contracts are autonomous and stateful scripts which

would be stored in the Ethereum blockchain and are utilized to define the rules. In Ethereum,

smart contracts are treated as autonomous scripts or stateful decentralized applications that are

stored in the Ethereum blockchain for later execution. Ethereum Virtual Machine (EVM) is the

runtime environment of smart contracts which has been formally defined in the Ethereum Yellow

Paper [204].

External actors access Ethereum through Ethereum Nodes, the overall view of access to an

Ethereum network’s node has been depicted in Figure 2.3. World state is a mapping between

address and account state, i.e. each Ethereum account is considered as an object in Ethereum’s

world state. There are two types of accounts in Ethereum: Externally Owned Account (EOA)

which could be controlled by anyone in possession of a private key and could be created free of

charge. The other type of Ethereum account is the Contract Accounts (CA) which uses smart

contract (EVM) code, creation of which has a cost because it uses the network’s storage.

Any external account is able to create a single cryptographically signed instruction, which is

called a transaction. A transaction could be used to create a new contract (CA) or it could trigger

a message [204]. Any transaction needs to be approved as valid through mining, which costs a

fee. There is a universally agreed upon fee for any specific type of instruction (account creation,

executing instructions on EVM, access to account storage, etc.) which is expressed in gas. Gas

prices would be paid in Ethereum currency, namely Ether (ETH) and expressed in terms of Wei,

2https://www.coindesk.com/microsoft-launching-new-ethereum-blockchain-product

23

1 Wei = 10−18 ∗ ETH . Transactions would be batched in blocks, which would be mined and

successfully added to the blockchain. Each successfully mined block would be broadcasted to all

the network participants. Current protocol of mining in the Ethereum blockchain is a Proof of

Work (PoW).

Blockchain and IoT Access Control

Figure 2.4: Whether a Blockchain is the Appropriate Technical Solution for Your Problem, taken
from [205]

Numerous access control frameworks have been proposed based on blockchain, given the in-

tense hype around this technology. Ethereum [8] is the first blockchain platform to present the

smart contracts [45] and provides a built-in Turing-complete programming language, i.e. Solidity,

which makes it possible to create arbitrary state-transition functions on blockchain to encode in-

tended logic. Other blockchain platforms like Hyperledger Fabric 3, Ripple 4, bitcoin 5 and EOS 6

have later provided smart contract capability to their chains. However, being the first platform to

3https://www.hyperledger.org/use/fabric
4https://www.ripple.com/
5https://bitcoin.org/en/
6https://eos.io/

24

provide smart contracts along with the maturest code-base and user-base, Ethereum has been used

in many access control frameworks which have been proposed to provide distributed IoT access

control.

Blockchain is utilized in many research works to implement operational access control. Some

authors considered traditional access control models, including RBAC and ABAC as the most

prominent ones, to have some drawbacks which makes them inappropriate in many IoT use cases,

as listed below [207]:

• Scalability: management burden for traditional models, especially RBAC and ACL, makes

them hard to scale as the number of IoT devices rapidly grows. The complexity of manage-

ment grows in ABAC when large-scale IoT environments are needed, thus attribute manage-

ment brings added intricacy.

• Heterogeneity: Both RBAC and ABAC paradigms are inflexible to manage delegation and

transitivity for intra-domain communication. This problem would get worse in IoT environ-

ments as there are many different vendors and IoT platforms.

• Spontaneity: traditional access control models, including RBAC and ABAC, are designed

with a presumption of a long-lived pattern to exist. However, IoT environment interactions

are usually spontaneous, short-lived and highly dynamic.

• Interoperability: As IoT devices are resource constrained and usually communicate with

each other through lossy networks, a lightweight access control would be an outstanding

requirement.

On the other hand, the blockchain characteristic of being naturally distributed removes the

single point of failure and other problems associated with central management. Blockchain im-

mutability eliminates the concern of privacy leakage by untrusted third parties and using consensus

protocols ensures to have only valid transactions recorded on the chain. Moreover, immutability

makes auditable access control possible. Furthermore, the idea of smart contracts to express ar-

25

rangements between parties into tamper-proof, self-executing computer codes found extensive use

cases in automated access control [129].

Despite all the benefits which could be taken from employing blockchain in access control

solutions, there are also some researchers who have a more skeptical view on the blockchain phe-

nomenon and the excessive hype around it. Authors in [205] argue the use of blockchain to be

sensible only when there are multiple mutually mistrusted parties who wants to make changes in a

system’s state and they do not want to rely on a third part for this purpose. Based on this argument,

authors proposed a flow chart as shown in Figure 4.4 which tries to determine the necessity/type

of the blockchain to be used. Red arrows in the Figure 4.4, indicate our position with blockchain

requirement and utilization, as we propose to use Ethereum blockchain for administrative access

control in smart home IoT.

BlendCAC [207] encodes access rights in capability tokens which are deployed as smart con-

tracts along with another type of smart contract which represents the delegation. The proposed

capability-based model is at operational level in which each transaction required to spend almost

$1.02 to be completed given the gas price in the public Ethereum in 2018, which is strongly pro-

hibitive to be used by a normal user of a smart home even if the Ether price did not spike. Authors

in [135] tried to fix some of the issues of the BlendCAC model by proposing a fine-grained access

control model, however no cost or performance metric has been discussed. Another blockchain-

based, capability-based approach could be found in [89] which is a decentralized user-centric ap-

proach based on the publish-subscribe model.

An attribute-based access control for IoT environments has been proposed in [87]. Authors

tested the proposed frameworks not on a local network, but on one of Ethereum test networks

called Rinkeby. Rinkeby uses Proof of Authority (PoA) as its consensus mechanism, which is

faster than current Ethereum consensus mechanism, i.e., Proof of Work (PoW). So, presented

results in [87] could be considered as a lower bound. Yet, those costs are still prohibitive to be

applied in a smart home for operational access control. Another approach [126] has been codified

and tested on the Ropsten (PoW) testnet, which uses the same consensus algorithm as Ethereum

26

mainnet (main network). However, the estimated space and gas requirements in the paper proves

the proposed approach to be nonviable in a smart home environment.

Role-Based access control has been also used to design blockchain-based approaches for me-

diating access in IoT environments [55, 159]. Cruz et. al. [55] proposed an RBAC-based platform

along with a challenge-response protocol to facilitate inter-organizational access control. Since

their RBAC-based smart contract only encodes add/remove a user/endorser and change the con-

tract’s status, which we argue as administrative-type of tasks, the evaluation results show this

platform to be practical in terms of cost, however authors have not provided any time evaluation.

There are some blockchain based access control frameworks lacking the basis of a formally

defined access control models, such as the trust-based layered framework proposed by Dorri.

et al. [65] or the RDF-based architecture for IoT access control in smart buildings [41]. Con-

trolChain [155] is another blockchain based architecture for IoT authorization which does not rely

on a specific access control paradigm, instead authors included an encoder using which differ-

ent access control models could be transformed to their architecture authorizations. Furthermore,

some blockchain-based access control frameworks are built upon other blockchain platforms, such

as bitcoin [125, 146], Hyperledger Fabric [104, 123] and EOS [159].

2.3 Device-to-Device Communication in IoT Environments

Our proposed model in Chapter 5 aims to provide an access control model for device-to-device

interoperability in an IoT smart home which contains heterogeneous devices. Although there is

no access control model specification proposed for this purpose, we briefly discuss some of the

academic and industrial efforts to facilitate device-to-device communications in different IoT ap-

plication domains.

Seamless interoperability among IoT devices, end-to-end device-to-device communication, is

imperative for incipient evolution of the IoT ecosystem. There are situations in which co-located

devices that want to interoperate use heterogeneous communication technologies, which makes it

challenging [33, 140]. There are extensive efforts going on to provide direct intelligent communi-

27

cations among IoT devices. OneM2M [197] is a community aimed at providing common machine-

to-machine services by developing technical specifications. IEEE P2413 [101] defines reference

architectures for multiple IoT domains, smart city, transportation, etc. The 3rd-generation partner-

ship project (3GPP) to provide cellular IoT via proposing innovations on Extended Coverage GSM

Internet of Things (EC-GSM-IoT), LTE for Machine-Type Communications (LTE-M) and Narrow-

band Internet of Things (NB-IoT) [121]. Some researchers proposed authentication and authoriza-

tion mechanisms based on 3GPP [32,179] at networking layer and focused on user’s authentication.

Similarly, there are a number of approaches which rely on semantic models based on OSGi frame-

work [21] to provide network-level interoperability in home environments [42,107,152]. However,

none of them give a clear account on authorization and access control modeling.

Furthermore, there are multiple standardization efforts going on to define architectural stan-

dards to facilitate IoT systems interoperability. BIG IoT [162] was a joint project among 13 Eu-

ropean participants, trying to address the fragmentation of IoT application/services by designing a

unified Web API for smart city applications, called the BIG IoT API which is a software library.

The project results contained in [30,43,44,175]. Agile [70] is anther project which tries to provide

device-level interoperability through building an adaptive and modular gateway for heterogeneous

IoT devices [73, 119]. SymbIoTe (symbiosis of smart objects across IoT environments) [164] pro-

vides an abstraction layer to enable resource sharing and discovery on top of various IoT platforms

via a unified control view for rapid cross-platform applications [83, 189, 196]. Authors in [178]

proposed a distributed authorization system, which relies on SymbIoTe ABAC-based authoriza-

tion and allows platforms to define access policies at resource level. However, all nodes must

have the same access control data and agree on the same result, as proposed work cannot provide

trustworthiness. Nevertheless, no access control model/specification has been provided.

Vicinity [71] is another project aimed at connecting different smart objects into a social net-

work, a.k.a virtual neighborhood, to build a device- and standard-agnostic platform for IoT in-

frastructure [52, 85], with use case in energy, building, e-health and mobility application domains.

BIoTope [163] tries to build a set of necessary standardized open APIs to provide system inter-

28

connections using contextual information from heterogeneous platforms with large-scale pilots

implemented in smart cities. OpenIoT is an open source IoT platform proposed to facilitate data

collection from a variety of sensors. It provides semantic interoperability of heterogeneous plat-

forms by providing a standard-based model via applying a SSN-ontology [180,188]. Nonetheless,

using OpenIoT requires all resources to be integrated with the same information model, namely

SSN ontology. All the aforementioned efforts have a common goal , which is to create standards

for heterogeneous IoT device interoperability. While having commercial and real-world partners,

however, there is no de-facto standard and there would be none in foreseeable future [127].

INTERIoT [77] is an approach which is not aimed for providing a reference nor a standard

model for IoT communication. Rather, its goal is seamless cooperation/integration of heteroge-

neous IoT platforms based on a layered approach. In a device-to-device paradigm, all devices could

communicate seamlessly with each other without intermediaries, through their local area network

or over the Internet. There are a few research works in which authors tried to embed authorization

logic in the smart objects by using capability tokens [35, 96], however these approaches are more

focused access enforcement, and no access control model specification is proposed. Moreover,

proposed model has low awareness of the contextual information for making access decisions

which is very important to be considered in dynamic IoT environments. However, the hetero-

geneity in all levels of IoT technology, including device, networking, middleware, application and

data/semantics of IoT scenarios, makes heterogeneous IoT devices cumbersome [77]. Enabling

technologies for next generation smart systems which includes device-to-device communications

and its challenges have been discussed in [182].

Another group of research works considered heterogeneity of IoT devices, even so their focus is

on user-to-device interactions over heterogeneous IoT platforms [143]. A capability-based access

delegation approach for device-to-device interaction has been proposed in [28]. However token

validation is not addressed and it contains no access control model to support device-to-device

authorization. It is noteworthy that many IoT devices are known as black boxes, as their state

and composition, including the identity of external services with which they communicate, are not

29

visible. In many cases there is no access to IoT devices software or configuration [130]. Therefore,

IoT devices call for specific ways of access and management, which would probably be different

than conventional ways for common IT devices. In a device-to-device paradigm one IoT device

requests access to another device and there should be an appropriate access control to govern that.

30

Chapter 3: SAFETY AND CONSISTENCY OF SUBJECT ATTRIBUTES

IN DISTRIBUTED ABAC ENVIRONMENTS: A SMART HOME USE

CASE

Attribute-based access control (ABAC) systems typically enforce pre-authorization, whereby an

access decision is made once prior to granting or denying access. In this chapter, we address the

safety and consistency problem in distributed attribute-based access control (ABAC) systems. Our

focus is on the consistency of subject’s attributes. First, we propose five consistency levels by en-

forcing restrictions on timeliness of revocation checks of attribute certificates. Second, we present

a completely new perspective by considering a refresh scenario, instead of revocation. We formally

characterize three increasingly strong levels of consistency to restrict the exposure of the decision

point to stale attribute values. Finally, we investigate the safety and consistency problem in the

context of mutable attributes in the sense of the UCONABC model [150]. Mutability adds further

complication to establish consistency requirements and specifications, as it requires synchroniza-

tion mechanisms in place to update attribute values. We identify two categories of use cases of

practical benefit in the context of ABAC, which turn out to be amenable to quota-based solutions.

We develop a formal characterization of required consistency using refresh in this context. We

also observe that revocation is inappropriate to be used in the context of mutable attributes, which

has been the traditional approach for checking the attributes’ freshness for immutable attributes.

Results of above-mentioned research have been published in following three peer-reviewed papers:

1. Mehrnoosh Shakarami, and Ravi Sandhu. "Safety and Consistency of Subject Attributes

for Attribute-Based Pre-Authorization Systems", In Proceedings of National Cyber Summit

(NCS), pp. 248-263. Springer, Cham, 2019.

2. Mehrnoosh Shakarami, and Ravi Sandhu. "Refresh instead of revoke enhances safety and

availability: A formal analysis." In IFIP Annual Conference on Data and Applications Secu-

rity and Privacy, pp. 301-313. Springer, Cham, 2019.

31

3. Mehrnoosh Shakarami, and Ravi Sandhu. "Safety and Consistency of Mutable Attributes

Using Quotas: A Formal Analysis." In 2019 First IEEE International Conference on Trust,

Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 1-9. IEEE,

2019.

3.1 Motivation

In attribute-based access control (ABAC) access decisions are made on the basis of attribute values

of subjects, objects and environment with respect to a policy. Attributes and policy are susceptible

to change. Ideally the decision point should know their real-time values, which is not practically

feasible. Even if attributes and policy are queried from appropriate authorities immediately prior

to every decision, there is irreducible network latency. Realistically, some values will be cached

due to performance, cost, and failures. Consequently, some access decisions may be incorrect. We

call this the safety and consistency problem. We investigate this problem with focus on subject

attributes. We assume that the policy and object/environment attributes are known in real-time

at the decision point. This is reasonable since the decision and enforcement points are typically

co-located with the object’s custodian who maintains these values. This reduces the problem to

safety and consistency of subject attributes.

Moreover, we note recognize the concept of refreshing attribute values rather than simply

checking the revocation status, as in traditional approaches. Refresh replaces an older value with a

newer one, while revoke simply invalidates the old value. As we will show, this enhanced possibil-

ity of getting a new value rather than an invalid response enhances safety and availability. We also

define the concept of being satisfactory for an attribute value with respect to a policy, which is first

introduced in our work to the best of our knowledge. Relying on the history of satisfactory attribute

values, we introduce additional flexibility to grant access to authorized users. Lastly, we investi-

gate safety and consistency in the context of mutable subject attributes which introduces additional

complexity to the problem. We consider attributes mutable if their changes are the consequence of

access utilization by subjects. In particular, there might be multiple concurrent sessions manipu-

32

lating the same mutable attribute. Therefore, in addition to exposure of the decision point to stale

attribute values, safety and consistency can be compromised due to concurrent utilization of the

same attribute. While the general consistency problem has vast literature in the distributed systems

domain, practical solutions are typically dependent on the specific application domain. We iden-

tify two categories of use cases of practical benefit in the context of ABAC, which turn out to be

amenable to quota-based solutions. We provide a formal analysis of the resulting solutions. We

provide smart home use cases in each section to showcase how safety and consistency problems

could be handled utilizing proposed solutions.

3.2 Safety and Consistency of Subject Attributes for Attribute-Based Pre-

Authorization Systems

Assuming an ABAC model is in place, we focused on a pre-authorization model in which our goal

is to provide the decision point with the most recent status of subjects’ attributes. For convenience

we understand the term attributes to mean attribute values. These attributes are obtained as creden-

tials (a.k.a certificates) issued by an Attribute Authority (AA). A credential which must be coupled

to a specific subject, which is typically achieved by embedding the subject’s identity in the cre-

dential. The identity of the subject must be authenticated before the credential is coupled with that

subject. The details of these processes can be complex and susceptible to security vulnerabilities

and flaws. All the same there are multiple well-known standards such as X.509 [137], SAML [142]

and OAuth [102] in this arena. We assume that suitable mechanisms exist to bind credentials to

subjects without requiring any specific technique for this purpose. Regardless of the way through

which the attributes are presented, we assume proposed attributes to be authentic and tied to the

subject. Credentials may be signed or unsigned depending on how they are acquired. Common to

all definitions, a credential specifies the value of a single attribute for the subject.

Each credential has a start time and end time, which establish the overall lifetime for validity

of the attribute value given in the credential. The credential may be revoked by the AA during this

putative lifetime. Thus the relying party (the decision point) must make one or more revocation

33

Table 3.1: Table of Symbols

Symbol Meaning Symbol Meaning
ci ithcredential treq request time
tir,k time of kth revocation check for ci td decision time
tir,max last time of revocation status check for ci te enforcement time
tiinvalid first time ci has been found to be revoked tistart start time of ci
tirevoc actual revocation time for ci (if any) tiend end time of ci

checks with the AA to gain additional assurance of the credential’s validity 1. The consistency

problem arises when multiple credentials of a subject are required to make an access decision. If

the lifetimes and revocation check times of required credentials do not align properly it is possible

to make incorrect access decisions, both in allowing access that should be disallowed and vice

versa.

3.2.1 Problem Statement and System Assumptions

We require every credential to have a determined lifetime interval which has been specified by its

start time and end time. For short-lived credentials this interval is small, say minutes, seconds or

even less, while for long-lived credentials this interval could span days, months or years. In either

case we recognize the possibility that the credential may get revoked during its lifetime, although

this is especially germane for long-lived credentials. We forbid use of a credential outside its

lifetime. The revocation status of a credential may be checked as appropriate by the decision

point, and a credential that is known to be revoked cannot be unrevoked. We also assume that

attribute values do not change as a result of credential usage, so that attributes are immutable in

the sense of [150].

Following LW we refer to the set of a subject’s credentials used to make an access decision

as the view of the decision point (VDP). The appropriate view depends upon the policy being

evaluated. In general, the view might change during evaluation. Consider a policy P which is a

1Credential lifetimes can range widely from months to seconds. For very short-lived credentials revocation checks
may not be useful. For simplicity we consider that for a short lived credential there is an implicit and successful
revocation check at its start. Thus we can uniformly assume there is at least one revocation check by the relying party
for each credential that it uses in making an access decision. For long-lived credentials there should be at least one
revocation check after start time.

34

disjunction of two predicates A and B, i.e., P = A ∨ B. The decision point may choose only cre-

dentials included in the A predicate as relevant to P in order to perform the first step of evaluation;

if A fails, B will replace it in the view and the set of relevant credentials to P will change as a

result.

Definition 1. The set of attributes included in the view of decision point related to the policy P at

time t is called the set of relevant credentials and denoted by V P,t
DP .

Since required credentials for evaluating a policy would be collected incrementally and life-

times of different credentials might not be the same, there is no guarantee that previously collected

credentials are still valid while the latter ones are acquired, which might cause the safety and

consistency problem. Following example illustrates the inconsistency problem.

Example. Alice is a portal manager in the sales department of a company. If she wants to com-

municate with clients through the portlet website, the decision point needs credentials attesting her

sales group membership and user role. If she wants to utilize higher levels of access, for example

editing and approving contracts with clients, both user and manager role credentials are required.

Suppose Alice has the user role from January 1st (start time) until March 1st (end time). Her sales

group member certificate is valid from January 25th till February 24th and she is given the manager

role from Feb 10th (start time), which is valid until March 9th. Suppose the decision point acquired

and validated the user role and sales group certificates most recently on January 25th and Feb 8th

respectively. It also collected a manager certificate on Feb 10th which was verified to be valid (via

revocation check) on the same day. So, the decision point would honor the manager’s access to

Alice if she requests an access afterward. Due to a reorganization in the company, Alice may no

longer be a manager after Feb 17th. Also, suppose Alice’s user role certificate has been prema-

turely revoked on Feb 9th. But if the decision point still relies on the previous revocation checks,

Alice would be able to exercise manager’s rights after revocation of her relevant credentials, which

results in an access violation.

Violation by relying on outdated validation information is a common problem in access control

enforcement. While this example illustrates inconsistency with long-term cached credentials, sim-

35

ilar problems can arise even if all needed credentials are accumulated over a short period of time.

Table 3.1 defines a set of self-explanatory symbols to refer to important time stamps used in this

section. There are some common assumptions which have been made in both LW and our work as

follows.

1. Once a credential is revoked, it cannot be unrevoked. However, a new credential can be

issued for the same attribute for that subject.

2. There is a single instantaneous decision time td. The access decision may be re-evaluated

subsequently with, say, different credentials but this latter evaluation is treated as a separate

and distinct decision.

3. V P,td
DP is the only view of interest, in which P is the policy which should be satisfied to grant

the access at decision time td and DP stands for the decision point.

We always use the latest revocation check results for making access decisions. So, if we have

max i revocation checks for ci, the tir,max indicates the latest revocation check (max i
th) of ci and it

would be utilized in decision making.

3.2.2 Consistency Levels

In this section, we develop five consistency levels relative to the view of the decision point ordered

as shown in Fig. 3.1-(a). We say that a credential is in its validity interval or is valid, provided

that the current time is not before the credential’s start time, nor after the credential’s end time

and the credential is not known to be revoked at any time before the current time. A revocation

check is never done after the end time since the credential has already expired. Once it is revoked

a credential cannot become valid again. It follows that if validity of a particular certificate is

confirmed via revocation check at time t after its start time, the credential has been valid for all

times between its start time and t. Let C be the set of all credentials in the system, and T the set

of all possible time stamps. We formalize the notion of a credential’s validity status at time t by

defining the following three-valued function. We call a credential Invalid , if the following function

36

Figure 3.1: (a) Our consistency levels (b) LW consistency levels. Equivalence is color coded.

returns False.

Valid : C × T → {True,False,Unknown}

Valid(ci, t) =



True ⇐⇒ Valid(ci, t
i
r,k) ∧ (tistart ≤ t ≤ tir,k)

Unknown ⇐⇒ Valid(ci, t
i
r,max) ∧ (tir,max < t ≤ tiend)

False ⇐⇒ (¬Valid(ci, tir,max) ∧ (t ≥ tir,max))

∨(t /∈ [tistart, t
i
end])

(3.1)

In the rest of this section we propose five consistency levels. For each consistency level, we

provide a formal specification along with the properties which are guaranteed if we apply the

proposed specification.

Incremental Consistency

This level requires each relevant credential to be found valid by a revocation check before the

decision time. In the above-mentioned example in Section 3.2.1, suppose Alice wants to access

the portal on Feb 25th, so user and sales group certificates should have been checked. Although

37

Figure 3.2: Incremental Consistency with Unrestricted Decision Time

one of her relevant credentials (sales group) expired one day ago, the system would let her in.

This access violation happens because at this level we may use a credential for an access decision

after its tiend time. As shown in Fig. 3.2, two credentials C1 and C2 have been used after their

corresponding end times.

Specification. Every credential in the view of decision point is valid at its latest revocation check

which has been done before the decision time.

(∀ci ∈ V P,td
DP) [(tistart ≤ tir,max < tiend) ∧ (max

∀ci∈V
P,td
DP

tir,max < td) ∧Valid(ci, t
i
r,max)] (3.2)

Property1. For every relevant credential, there is at least one point in time before the decision

time, at which that credential has been found (via revocation check) to be valid.

(∀ci ∈ V P,td
DP)(∃ti) [(tistart ≤ ti < tiend) ∧ (ti < td) ∧Valid(ci, ti)]

Proof. Without loss of generality, we can assume ti = tir,max. Moreover, we know that

max∀cj∈V
P,td
DP

tjr,max < td =⇒ ti < td.

Internal Consistency

In order to enforce lifetime overlap for all relevant credentials, internal consistency requires every

relevant credential to be started before the end point of any other relevant credential. Furthermore,

if a credential is revoked, this revocation should happen after all credentials have started. As shown

38

Figure 3.3: Internal Consistency

in Fig. 3.3, it is possible to deliberately utilize an already revoked credential at this level. Moreover,

it is still possible to use a credential beyond its end time, as in incremental consistency. In the case

of example in Section 3.2.1, Alice would be granted access to the portlet even if we know her user

role credential has been revoked on Feb 9. The formal specification is as follows.

Specification. Every credential in the view of decision point has to be started before the minimum

endpoint of all credentials and has to be valid at some point before the decision time. The minimum

known revocation of any relevant credential occurs after all credentials have been started.

(∀ci ∈ V P,td
DP)(∃tir,k) [(tistart ≤ tir,k < tiend) ∧Valid(ci, t

i
r,k) ∧ (max

∀ci∈V
P,td
DP

tir,max < td)

∧ (max
∀ci∈V

P,td
DP

tistart < min
∀ci∈V

P,td
DP

tiinvalid) ∧ (max
∀ci∈V

P,td
DP

tistart < min
∀ci∈V

P,td
DP

tiend)]

(3.3)

Property1. There is at least one point in time at which all relevant credentials are in their

[tstart, tend) time intervals and are not known to be Invalid .

(∃t′)(∀ci ∈ V P,td
DP) [(tistart ≤ t′ < tiend) ∧ (Valid(ci, t

′) ̸= False)]

Proof. The last condition in Equation 3.3 provides overlapping of lifetimes of all relevant cre-

dentials. Also, there is at least one revocation check for every credential at which it has been

found to be valid. So, there is at least one point, namely t′, in intersection of lifetime inter-

vals of all credentials at which every credential is either checked and found to be valid before

t′ (its validation status is unknown at t′) or it has not been checked yet (so it is valid at t′). If

39

Figure 3.4: Incremental Consistency with Restricted Decision Time

there is any credential which has been found to be revoked, t′ should be picked from the interval:

t′ ∈ [max∀ci∈V
P,td
DP

tistart,min∀ci∈V
P,td
DP

tiinvalid).

Property2. There is no subset relationship between incremental and internal consistency levels.

Proof. It is possible to have an incrementally consistent view in which there is no overlap between

lifetime intervals of all relevant credentials. So, it would not be internally consistent. On the other

hand, there may be an internally consistent view at which we recognize a credential at its latest

revocation check to be prematurely revoked, so thereby not incrementally consistent.

Incremental Consistency with Restricted Decision Time (Restricted-Incremental or r-

Incremental)

In this level, we restrict the decision time to happen necessarily when all relevant credentials are in

their lifetimes, say [tistart, t
i
end] (Figure 3.4). As opposed to previous levels, in this level if any of the

relevant credentials has expired the access request would be denied. In the case of Section 3.2.1,

if Alice tries to exercise her rights on Feb 25th (after her credential expiration) the decision point

would deny her access. In Figure 3.4, the second decision time would result in Deny, comparing

with the similar situation in Figure 3.2 and Figure 3.3 where both access requests resulted in Grant.

Specification and guaranteed properties are given below.

Specification. Every relevant credential has to be found valid at the latest revocation check which,

by assumption, happens before the decision time. Moreover, it is essential that the decision time

40

happens before any of the relevant credentials end time.

(∀ci ∈ V P,td
DP) [(tistart ≤ tir,max < td < tiend) ∧Valid(ci, t

i
r,max)] (3.4)

Property1. There is at least one point in time at which all the relevant credentials are in their

[tstart, tend) time intervals and are not known to be Invalid .

(∃t′)(∀ci ∈ V P,td
DP) [(tistart ≤ t′ < tiend) ∧ (Valid(ci, t

′) ̸= False)]

Proof. Based on Eq. 3.4, (∀ci ∈ V P,td
DP) [tistart ≤ td < tiend]. So, max∀cj∈V

P,td
DP

tjstart ≤ td <

min∀cj∈V
P,td
DP

tjend . By taking t′ = td, the proof for the first part is trivial. For the second part,

we know that the latest time we checked ci’s revocation status is tir,max, at which we found it to

valid (otherwise the access would be denied). But, we do not know about the real status of the

credential after the last revocation check and the Valid function would return Unknown at these

later times.

Property2. Any incrementally consistent view with restricted decision time has the following

property:
⋂

∀ci∈V
P,td
DP

[tistart, t
i
end) ̸= ∅

Proof. Following previous proof, there is at least one point (td) that lies in the

[max∀cj∈V
P,td
DP

tjstart,min∀cj∈V
P,td
DP

tjend)] interval. So, this interval is not empty.

Property3. Any r-incremental consistent view is incremental and internal consistent as well.

Proof. All three specifications have it in common that every relevant credential has to be found

valid at its revocation check. The first part of the incremental consistency with restricted decision

time is:

(∀ci ∈ V P,td
DP) [tistart ≤ tir,max < td < tiend =⇒ (tistart ≤ tir,max < tiend)

∧ (max
∀cj∈V

P,td
DP

tjr,max < td) ∧ ∃td ∈
⋂

∀cj∈V
P,td
DP

[tistart, t
i
end]

Therefore, r-incremental is a constrained version (subset) of incremental level. Moreover, since

we use the latest valid status, we are not aware of any revocation and tiinvalid = Null . So, all

41

Figure 3.5: Interval Consistency

properties of the internal level are also satisfied.

Property4. It is not necessarily the case that any incrementally/internally consistent view is r-

incremental as well.

Proof. In both incremental and internal levels, the decision time may be after some of the relevant

credentials’ endpoints, which means that we may have: td > min∀ci∈V
P,td
DP

tiend , which contradicts

r-incremental specification.

Interval Consistency

In case of the example in Section 3.2.1, Alice’s user role has been revoked on Feb 9th. If she tries

to communicate at manager level with clients at that date and system still relies on the latest revoca-

tion check which happened before actual revocation she would be let in, while there is no guarantee

that the credential is still valid. We know her user role has been revoked even before the manager

certificate starts. Interval level enforces latest revocation checks to happen in [tistart, t
i
end] for all

relevant credentials. So, it could be guaranteed that not only every credential is valid at some time,

but also all credentials were simultaneously valid. The specification and properties guaranteed by

this level are given below.

Specification. Every relevant credential has been found to be valid at the latest revocation check

before the decision time. Moreover, the latest revocation check happened after all credentials have

42

been started and before any of them ends.

(∀ci ∈ V P,td
DP) [(max

∀ci∈V
P,td
DP

tistart ≤ tir,max < td < min
∀ci∈V

P,td
DP

tiend) ∧Valid(ci, t
i
r,max)] (3.5)

Property1. There is at least one point in time, after all relevant credentials have been started

and before any of them ends, prior to decision time, at which all of the relevant credentials are

simultaneously valid.

(∃t′)(∀ci ∈ V P,td
DP) [(max

∀ci∈V
P,td
DP

tistart ≤ tir,max < t′ < min
∀ci∈V

P,td
DP

tiend) ∧Valid(ci, t
′)]

Proof. Let t′ = min∀ci∈V
P,td
DP

tir,max. For every relevant credential to the policy, we could guarantee

that it has been valid at t′. Note that if any credential has been found to be revoked at t′, it cannot

be unrevoked at any later time. Therefore, the proof is complete.

Property2. Every interval consistent view is r-incremental.

Proof. It is trivial that: (tistart ≤ max∀ci∈V
P,td
DP

tistart) ∧ (tiend ≤ min∀ci∈V
P,td
DP

tiend). Substituting these

equation in interval specification in Eq. 3.5, we can deduce: (∀ci ∈ V P,td
DP) [tistart ≤ tir,max < td <

tiend]. So, interval specification satisfies the specifications of r-incremental.

Property3. Not any r-incremental consistent view is necessarily interval consistent.

Proof. Based on Eq. 3.4, latest revocation of a credential might happen before some credentials

start time (tir,max < max∀cj∈V
P,td
DP

tjstart) or a credential may be validated after some credentials

expiration (min∀cj∈V
P,td
DP

tjend < tir,max), which contradicts with interval consistency specification.

Forward-looking Consistency

In the example in Section 3.2.1, suppose Alice tries to change the clients’ contracts on Feb 17th

(the set of relevant credentials includes sales group and manager role credentials). All relevant

credentials were checked on Feb 10 at which all have been started and none of them expired

yet, so the interval consistency timing constraints would be satisfied. However there is an access

violation, because the decision point relied on outdated revocation status information (relying on

revoked manager certificate). To solve this problem, we take the request time into account in

43

Figure 3.6: Forward-looking Consistency

our strongest level of consistency and impose constraints to ensure all credentials have been valid

simultaneously at some point after the request time (Fig. 3.6).

Specification. Every relevant credential has to be valid at its latest revocation check time, which

happens after the request time and before the decision time.

(∀ci ∈ V P,td
DP)[(max

∀cj∈V
P,td
DP

tjstart ≤ treq < tir,max < td < min
∀cj∈V

P,td
DP

tjend) ∧Valid(ci, t
i
r,max)] (3.6)

Property1. There is at least one point in time, after the request time and before the decision time,

at which all relevant credentials are valid simultaneously based upon their latest revocation checks.

(∃t′)(∀ci ∈ V P,td
DP)[(max

∀ci∈V
P,td
DP

tistart ≤ treq < t′ < td < min
∀ci∈V

P,td
DP

tiend) ∧Valid(ci, t
i
r,max)]

Proof. Suppose t′ = min∀ci∈V
P,td
DP

tir,max. For every relevant credential, we could guarantee that it

has been valid at t′, because otherwise it cannot be unrevoked at any later time including its latest

revocation check. So, the proof is complete.

Property2. Every forward-looking consistent view is interval consistent as well.

Proof. The definition of forward-looking consistency is a restricted version of interval consistency,

in which we restrict the latest revocation check to happen necessarily after the request time.

Property3. An interval consistent view is not necessarily a forward-looking consistent view as

well.

Proof. In case of interval consistency, it is possible to have a credential ci with tir,max < treq, which

44

contradicts with forward-looking consistency specification.

3.3 Refresh Instead of Revoke Enhances Safety and Availability: A Formal

Analysis

As previously mentioned, attribute values in an Attribute-Based Access Control (ABAC) environ-

ment are susceptible to change. Ideally the decision point should know real-time values, which is

practically impossible due to inherent delays of distributed systems and performance costs. This

can lead to granting access when it should be denied (safety violation) or denying access when

it should be granted (availability violation). The longer the gap between updates of credentials,

the higher the risk of relying on stale attribute values. In this section, we formally characterize

three increasingly strong levels of consistency to restrict the exposure of the decision point to stale

attribute values. For simplicity, we develop our formalism based on changing subject attribute val-

ues. Extension to changing object and environment attribute values is straightforward. Extension to

policy changes is more subtle. Policy changes may require additional credentials to come into play.

While acquiring these additional credentials the policy may change again. In principle, this could

lead to an infinite regress. In practice such an infinite regress is unlikely. Policies composed of

multiple sub-policies specified by different authorities also raise issues of policy conflicts [50,124].

A formal treatment of policy changes is beyond our scope.

Our main contribution is to develop a formal framework for safety, availability and consistency

problems of ABAC systems, via introducing the refresh scenario instead of the traditional revo-

cation check. As we will show, this enhanced possibility of getting a new value rather than an

invalid response enhances safety and availability. We also define the concept of being satisfactory

for an attribute value with respect to a policy, which is first introduced in our work to the best

of our knowledge. Relying on the history of satisfactory attribute values, we introduce additional

flexibility to grant access to authorized users.

45

Figure 3.7: (a) Revocation vs. Refresh (b) Comparing Grant vs. Deny

Table 3.2: Summary Table of Symbols

Symbol Meaning
treq request time
td decision time
ci ithcredential
tirevoc actual revocation time of ci (the AA always knows this time)
tiref,k time of k-th refresh of ci
tistart,k attribute start time of ci after k-th refresh
tiend,k attribute expiration time of ci after k-th refresh
kmax(t) latest refresh of ci before time t (ci is determined by context)
valikmax(t) the value of ci after kmax(t)-th refresh
tiref,kmax(t) time of kmax(t)-th refresh of ci
tistart,kmax(t) attribute start time of ci after kmax(t)-th refresh
tiend,kmax(t) attribute expiration time of ci after kmax(t)-th refresh

3.3.1 Problem Statement and System Assumptions

We assume an ABAC authorization system in a distributed multi-authority environment. For a

particular access request, there is a single decision point which determines whether or not the

access is allowed by the access control policy based on attribute values. For convenience we use

the terms attribute and attribute value interchangeably. Subject attributes might change during

credential lifetime. A change could be a new value, a new lifetime or a premature revocation. In

all cases the decision point needs to be updated about the latest changes of the attribute through

either revocation or refresh. In revocation, AA would represent the current status of the credential

46

as either Valid (no change) or Invalid (otherwise). However, with refresh AA can indicate the

credential’s status as Still-Good, New-Value or Invalid. Still-Good and Invalid correspond to Valid

or Invalid in the revocation scenario. New-Value reflects any change in credential’s start time, end

time or new value. So, Invalid status in revocation splits in two possibilities of Invalid and New-

Value in refresh (see Figure 3.7-a). Thereby, refresh can allow more accesses than revoke and deny

fewer accesses (see Figure 3.7-b).

Refresh function is defined as follows. T is the set of possible time stamps and C represents

the set of all credentials in the system. Table 3.2 defines the symbols used in this definition and

throughout the paper.

Refresh : C × T → {Invalid ,Still -Good ,New -Value} (3.7)

Refresh(ci, t) =



Invalid ⇐⇒ (t ≥ t iend ,kmax(t)) ∨ (t ≥ t irevoc)

New -Value ⇐⇒ (t istart ,kmax(t) ̸= t istart ,kmax(t)−1)

∨(t iend ,kmax(t) ̸= t iend ,kmax(t)−1) ∨ (val ikmax(t) ̸= val ikmax(t)−1)

Still -Good ⇐⇒ (t istart ,kmax(t) = t istart ,kmax(t)−1)

∧(t iend ,kmax(t) = t iend ,kmax(t)−1) ∧ (val ikmax(t) = val ikmax(t)−1)

Following example highlights the benefits provided by considering refresh rather than revo-

cation. Although granting illegitimate access is considered as a greater risk in many systems,

availability is also important in which a legitimate user should not be denied access.

Example. Authorization policy in a coding company grants read access to a project’s code to

managers and test engineers and read/write access to developers. Alice was a test engineer. But

her role has changed to a developer in the same project. Subsequently she submits a write request

to the decision point. In revocation, checking her cached role credential results in Invalid response

since she is no longer a test engineer. So her request would be denied. In refresh, however, New-

Value response along with a new credential asserting her new role would be returned and access

would be granted, as it should be based on policy.

47

Claim. If a subject can proceed to utilize a requested access in a revocation scenario, it can proceed

in a refresh scenario as well. But there are scenarios in refresh-based systems which let the subject

proceed, whereas it would be denied in revocation-based systems.

Proof. If nothing changed about a required credential, revocation and refresh would return

Valid/Still-Good respectively. So, the first part of the claim follows. For the second part, it is

possible that a required credential has changed with respect to start/end time or the value. So AA

response in revocation scenario will be Invalid which prohibits subject’s access. However with

refresh the response would be New-Value, so access would be granted (see Figure 3.7).

System Assumptions

Without loss of generality, we suppose that the policy is stated in Disjunctive Normal Form (DNF),

which is the disjunction of different conjuncts. The decision point tries to find the first conjunct

which satisfies the desired level of consistency. This conjunct is called the View of the decision

point at any specific time t with respect to the policy P which we denote as V P,t
DP . We assume the

decision point can instantaneously check the policy and identify the view.

Definition 2. At any time t, we call the set of subject’s attributes included in V P,t
DP as the relevant

credentials.

We make the following assumptions in this section.

1. Attributes do not change as the result of attribute credentials usage, that is we assume at-

tributes to be immutable in the sense of [150].

2. We will not utilize any expired credentials. If any required credential is beyond its end time,

decision point polls AA to get a new credential for the attribute.

3. We do not refresh any credential after it has been found to be Invalid.

4. There is one instantaneous decision time (td) and one instantaneous request time (treq).

5. V P,td
DP is the only view of our interest as described above.

48

6. If refresh returns a New-Value result, its start time cannot be prior to its previous start time,

i.e., tistart,k ≥ tistart,k−1.

7. AA will not return a credential along with New-Value which has not been started yet, so,

tiref,k ≥ tistart,k.

3.3.2 Consistency Levels

In this section, we would first discuss some preliminary concepts as follows.

Satisfactory Values

We define an attribute to be satisfactory if and only if its value fulfills the policy conditions. For

instance if the policy requires the security level to be at least 3, any security level credential with

the value greater than or equal to 3 is considered as satisfactory. Obviously the same credential

may not be satisfactory with respect to another policy. We formally define satisfactory with respect

to a policy P at the specific time t as follows.

Definition 3. The view at time t has the structure V P,t
DP =

∧
1≤i≤n F (i) in which F (i) is an atomic

expression specifying required conditions for ci’s value. We define Sat as follows to determine

satisfactory requirements for ci’s value.

SatP,tci = True ⇐⇒ F (valikmax(t)) = True (3.8)

Freshness

We rely on the freshness concept in the refresh scenario, compared to validity in the revocation

scenario. We formally define freshness via Fresh function as follows. When Fresh is used in a

boolean expression, we understand Fresh(ci, t) to be False when its value is Unknown.

Fresh : C × T → {True,False,Unknown}

49

Fresh(ci, t) =



True ⇐⇒ (tistart,k ≤ t ≤ tiref,k)

∧ (Refresh(ci, t
i
ref,k) ̸= Invalid)

Unknown ⇐⇒ (tiref,k < t < tiend,k) ∨ (t ≥ tiref,kmax(t))

False ⇐⇒ [(t ≥ tiref,k) ∧ (Refresh(ci, t
i
ref,k = Invalid))]

∨[t ≥ tiend,kmax(t)])

(3.9)

Following example is used throughout this section. Then, we introduce three levels of consis-

tency taking both old and new values of relevant credentials into account. We provide specifications

and consequent properties guaranteed by each level in the rest of this section.

Example. In a company, project managers and testing engineers with a security level of at least 5

can access project’s documents. The policy in DNF form is P = [(role ∈ {manager , engineer}) ∧

(security-level ≥ 5)]. Bob is a project manager from January 1st to January 25th based on a refresh

on January 15th. A refresh on January 21st shows his role has changed to testing engineer as

of January 20th through March 20th. A refresh on January 15th shows his security level is 6 as

of January 10th to March 20th. Another refresh on January 28th reveals security level has been

downgraded to 4 since January 26th through March 20th.

Interval Consistency

At this level, it is required to find overlap of freshness intervals (simultaneous freshness) of relevant

credentials before the decision time. In the above-mentioned example in Section 3.3.2, suppose

Bob requests access to project documents on Jan 18th. Based on refresh results at Jan 15th, de-

cision point finds simultaneous freshness of relevant credentials during Jan 10th-Jan 15th with

satisfactory values. So the access will be granted. The stipulated overlap could be found for most

recent refresh results of relevant credentials (Figure 3.8-(a)) or by considering both old and new

refresh results (Figure 3.8-(b)). In these and subsequent figures, if any refresh is shown on the first

line, it returns Still-Good while any other refresh returns New-Value. Moreover, in all cases the

values of the three credentials are satisfactory. In Figure 3.8-(a) the overlap is for the most recent

50

Figure 3.8: Interval Consistency

refreshed values, whereas in Figure 3.8-(b) the overlap is for a mix of the refreshed values, one

new and two older.

Specification. Every credential has been refreshed at least once before the decision time and found

to be fresh. Most recent values of all relevant credentials are satisfactory with respect to the policy.

Any overlap of freshness intervals for the freshest/cached credentials is acceptable so long as the

values are satisfactory.

Interval(V P,td
DP) ⇐⇒ (∃t ≤ td)(∀ci ∈ V P,td

DP)

[max
∀cj∈V

P,td
DP

tjstart,kmax(t) ≤ tiref,kmax(t) < min
∀ci∈V

P,td
DP

tiend,kmax(t)

∧ Fresh(ci, t
i
ref,kmax(t)) ∧ Fresh(ci, t

i
ref,kmax(td)

) ∧ SatP,tci ∧ SatP,tdci

∧ max
∀ci∈V

P,td
DP

tistart,kmax(td)
< td < min

∀ci∈V
P,td
DP

tiend,kmax(td)
]

(3.10)

Property1. There is a time interval during which all relevant credentials were simultaneously fresh

with satisfactory values with respect to the policy.

Proof. Based on Equation (3.10), there exists a time (t) prior to the decision time at

which the latest refresh of every relevant credential happens after all have been started

and before any of them ends. This implies all credentials are simultaneously fresh during

[max∀ci∈V
P,td
DP

tistart,kmax(t),min∀ci∈V
P,td
DP

tiref,kmax(t)].

51

Figure 3.9: Interval Consistency with Request Time

Corollary. if t = td, the latest values of relevant attributes have freshness overlap.

Comparing with Revocation-Based Scenario

Based on the Claim in Section 3.3.1, revocation and refresh are the same in case of Valid and

Still-Good responses from AA. But if the result is New-Value, the corresponding revocation result

would be Invalid which denies the access. In example in Section 3.3.2, if Bob requests access to

the project’s documents on Jan 25th and decision point rechecks the credentials, although Bob’s

role has changed, he would get the access in the refresh scenario whereas he would be denied in

revocation scenario.

Interval Consistency with Request Time

In the first level, the decision point relies on what avails of previous refresh results for relevant

credentials and access would be denied in case of any unrefreshed credential. By considering

the request time we could compensate for missing refreshes. In example in Section 3.3.2, if Bob

requests for accessing project’s documents on January 14th, the access would be denied at first

level since there is no refresh result available for required credentials. At second level, the decision

point refreshes the credentials after the request time and then checks the consistency requirements.

Figure 3.9 shows a similar example where the top credential is refreshed after request time.

52

Specification. Decision point refreshes any credential with missing refresh results after the re-

quest time. Afterwards, relevant credentials should satisfy the interval consistency (previous level)

requirements.

IntervalWithReq(V P,td
DP) ⇐⇒ (∀ci ∈ V P,td

DP) [tiref,kmax(treq)
̸= ⊥

∨ (∃tr treq < tr < td) Refresh(ci, tr)] ∧ Interval(V P,td
DP)

(3.11)

Proposition. We assume the set of relevant credentials would not change during the short gap

between request time and decision time, so, V P,treq
DP = V P,td

DP . In other words the policy will not

frequently change in the system.

Property1. There is a time interval during which all relevant credentials are simultaneously fresh.

Possible lack of refresh would not unnecessarily deny access.

Proof. Use of the same requirement of Interval(V P,td
DP) guarantees the same property of freshness

overlap of relevant credentials. Any missing refresh results would be compensated after request

time. It is possible that the gap between the request time and decision time does not last enough to

compensate for all the lacking information, but we consider it as an administrative setting which is

out of scope for this research to quantify.

Property2. Every interval consistent view with request time satisfies the interval consistency

requirements as well.

Proof. The proof is trivial since this level is defined based on interval level.

Property3. An interval consistent view may deny access allowed by interval consistent with re-

quest time.

Proof. Since we do not consider request time in the first level, there is no opportunity to compen-

sate for possible missing refreshes which could enable access.

Comparison with Revocation-Based Scenario. Considering the formal specification in Equa-

tion (3.11), which is based on the first level, the comparison is trivial. If refresh is substituted with

revocation, system’s availability would decrease. The same situation may happen with regard to

the example in Section 3.3.2 as discussed there.

53

Figure 3.10: Forward Looking consistency

3.3.3 Forward-looking Consistency

This level provides simultaneous freshness of all relevant credentials after the request time, con-

sidering both new and old credentials. Overlapping interval could either include the request time

(Figure 3.10-(a)) or not (Figure 3.10-(b)). In example in Section 3.3.2, if Bob requests access to

project’s documents on Feb 1st his credentials would be refreshed afterwards revealing changes in

role and security level leading to denial. However in previous levels an unauthorized access may

be granted.

Specification. Any relevant credential has to be refreshed at least once after the request time. All

relevant credentials have to to be found simultaneously fresh at or after the request time.

ForwardLooking(V P,td
DP) ⇐⇒ (∃t treq < t ≤ td)(∀ci ∈ V P,td

DP)[(treq < tiref,kmax(t))

∧ (max
∀ci∈V

P,td
DP

tistart,kmax(t) ≤ tiref,kmax(t) < min
∀ci∈V

P,td
DP

tiend,kmax(t))

∧ Fresh(ci, t
i
ref,kmax(t)) ∧ Fresh(ci, t

i
ref,kmax(td)

) ∧ SatP,tci ∧ SatP,tdci

∧ max
∀ci∈V

P,td
DP

tistart,kmax(td)
< td < min

∀ci∈V
P,td
DP

tiend,kmax(td)
]

(3.12)

Property1. There is a time interval during which all relevant credentials are simultaneously fresh

after the request time.

54

Figure 3.11: Smart Home Use Case: Forward-Looking Freshness Required

Proof. Based on Equation (3.12), all relevant credentials are simultaneously fresh during

[max∀ci∈V
P,td
DP

tistart,kmax(t),min∀ci∈V
P,td
DP

tiref,kmax(t))]. Part of this interval is located after the request

time since refresh has been done after it.

Property2. Every forward-looking consistent view is interval consistent with request time as well.

Proof. Comparing Equation (3.11) and (3.12) shows forward-looking consistency is a restricted

version of its preceding level, so the proof is trivial.

Property3. Not every interval consistent with request time view is necessarily forward-looking as

well.

Proof. At the second level of consistency, only some credentials need to be refreshed after request

time to compensate for lacking information. Whereas in forward-looking consistency, all have to

be refreshed after the request time.

Comparison with Revocation-Based Scenario. Changing credentials in revocation scenario

leads to hinder the access, whereas in refresh scenario, the New-Value in case of any changes

would let the subject proceed. In the example mentioned in Section 3.3.2, Bob’s request to ac-

cess project’s documents on Jan 20th would be denied in a revocation-based scenario, however in

refresh scenario access would be granted.

55

3.3.4 Smart home Use Case

Imagine an ABAC policy in a smart home IoT environment which regulates access to house’s

thermostat functionalities. The rules in this policy regulate user-to-device access based on user’s

attributes of age, role, location, and trust_level on one hand, on the other hand there is a required

trust level for each of thermostat’s functionalities. One of the requisites to access a functionality

for a user trying to acquire it, is having a trust_level greater-equal than assigned trust_level to

that specific functionality. So, the homeowner (or any home administrator) can assign highest

trust_level for scheduling thermostat, while users like kids, babysitter or any user other than parents

would not be assigned such a high trust level. Therefore, the thermostat’s scheduling functionality

would be only available to parents. Consider following simplified policy as a sample:

(s : user , o : thermostat , op : operation) ⇐⇒ ((op.trustLevel ≤ u.trustLevel) ∧

((u.role = ”parent”) ∨ (role ∈ {babysitter , kid} ∧ (u.location = ”home”)))

Based on the above policy, when a user u requests access to functionality op of thermostat,

three user attributes would be checked by the decision point to make an access decision, either

grant or deny. These attributes are supposedly delivered to the decision point through an attribute

credential. As indicated in the above policy, each functionality (a.k.a op) of the thermostat has its

own assigned trust level. Suppose the trust level to be a number between 1 and 5. For turning the

thermostat on/off this number should be at least 2, and for scheduling it should be 5. Therefore,

based on the policy, if a parent with trust_level = 5, wants to do any operation on thermostat

it would be granted. However a kid or a babysitter are authorized to do only on/off operation

while at home and their assigned trust level matches the requirements. Now consider the following

example.

Example. Alice is a newly hired babysitter. On Jan 5th, when she started her job, she was as-

signed the lowest trust level, say 1. So, based on the above policy she has no access to any of

the thermostat’s operations. After a few days on Feb 1st, the parent updates Alice’s trust level

value to 2. Now, she can turn the thermostat on/off. If she requests access to turn on/off thermo-

stat on Feb 5th following is what happens. Imagine the revocation-based scenario, if any of the

56

levels of previously mentioned consistency based on revocation is applied by the decision point

(see Section 3.2.2), Alice’s access to turn the thermostat on/off would be denied, even for the

forward-looking consistency in which the revocation check happens after the request time for all

credentials. The reason is the revocation check only shows the previous credential which contained

trust_level = 1 is revoked and no new value would be returned. However, relying on refresh-based

consistency level the story can continue as follows. After updating Alice’s trust level if she requests

access to turn on/off functionality of thermostat, instead of revoked status, the new_value would

be returned which grants access to Alice. Now suppose, Alice maliciously wants to turn off the

thermostat after she leaves the house. Although she is not home anymore, relying on any level

rather than freshness-forward looking consistency would authorize her access, while it should be

denied. The reason it is only at forward-looking level that we need the freshness interval of all

credentials to overlap. This situation has been demonstrated in Figure 3.11.

3.4 Safety and Consistency of Mutable Attributes Using Quotas: A Formal

Analysis

Previous works have assumed attributes to be immutable, to wit their values could be changed only

via administrative actions. However, so far there is no research carried out in the context of mutable

attributes, values of which could be changed as a result of users’ access. Our central goal in this

research is to investigate the safety and consistency problem in the context of mutable attributes.

Mutability adds further complication to establish consistency requirements and specifications, as

it requires synchronization mechanisms in place to update attribute values. There is a rich body of

literature in distributed environments dealing with concurrency. However, practical solutions are

typically dependent on the specific application domain. We identify two categories of use cases of

practical benefit in the context of ABAC, which turn out to be amenable to quota-based solutions.

More general treatment of consistency beyond quota-based solutions is beyond the scope of this

dissertation. We develop a formal characterization of required consistency using refresh in this

context. We also observe that revocation is inappropriate to be used in the context of mutable

57

attributes, while it has been the traditional approach to attribute freshness for immutable attributes.

3.4.1 Problem Statement and System Assumptions

Assuming an ABAC model is in place, we discuss the safety and consistency problem for mutable

attributes in this research. We assume attribute credentials are provided through different attribute

authorities (AA) and there is a single decision point in the system. The main goal is to propose a

practical approach to limit the exposure of the decision point to outdated attribute values. Admin-

istrative changes of attribute values are always done at the AA for both mutable and immutable

attributes. It is worth reminding that we consider attributes mutable if their changes are the conse-

quence of access utilization by subjects. So, if any administrative change happens that should be

managed administratively. As an example if the user’s credit line changes, that change has to be

managed and take effect via AA whereas using the credit line to purchase services is done auto-

matically by the system. It is also possible to check the most recent values of mutable attributes

with AA for each utilization, for example after each credit card utilization. However, it makes

AA a single point of failure and is as inefficient as any centralized approach. There is a big space

of analysis to deal with consistency problems in distributed environments with mutable attributes.

Our analysis focuses on a quota-based approach in which every mutable attribute value would be

treated as a quota and AA would delegate the quota to some predetermined distributed servers and

those servers take care of utilization of delegated quotas and update them locally.

Quota-Based Approach

Quota for reusable resources could be considered as reimbursable deposit which is refunded after

usage has finished [144]. There is another type of resource known as consumable which would

decrease in amount at each access without being refunded. A system that allows a user up to

five concurrent sessions for content streaming is an example of the former, since termination of a

session enables another one to be initiated. A system that allows a total of five uses is an example

of the latter; once consumed, the quota would not be refunded. Access quota has been previously

58

used in risk-based access control. Authors in [138] assigned quota to users and obligations in order

to regulate access risks. Access quota has been used in [203] to specify a threshold on tolerable

risk by the system through assigning quotas based on estimation of access needs during a specific

period of time.

We assume each mutable attribute has a global limit known to the corresponding AA. This

global limit can be managed in a centralized way by AA to be distributed and managed among

users whose access requires utilizing that attribute. In another approach, the global limit could be

delegated to local servers which would be responsible to distribute the global limit as local quotas

to be manipulated through different access utilizations. The totality of local quotas distributed in

this manner cannot exceed the global quota. In any case, we recognize two approaches to apportion

the global limit as follows.

1. Service-Based: In this approach AA assigns portions of the global limit to each service point,

regardless of the users who are utilizing access to the service. So, a global limit would be

set on concurrent number of service usage by all users. It is notable that a global limit would

be set for each service instance of a service. As an example, an Internet Service Provider

supplies internet connection to hotel rooms. Each room’s internet connection would be a

service instance. Regardless of which users/devices are connected to the service, an overall

internet usage limit would be set for all provided service instances.

2. User-Based: In this approach a subscriber (user) to a service would be assigned a limited

number of concurrent sessions to use the service. As an example, assign a specific amount of

storage to every user on the cloud or put an upper limit on the number of concurrent sessions

that each subscriber to a TV channel can have. Note that attribute-based access control

could be done either id-less (anonymous) as proposed in Idemix [46] or non-anonymous as

we address it in user-based global limit assignment.

In both approaches a global count limit would determine the upper bound of usage which restrains

the concurrent usage number of the service objects. Upper bound could be set either as a count-

59

down which is consumable and non-refundable after each usage or it can be restored after access

utilization has been completed.

Definitions and Assumptions

We examine the safety and consistency problem from the perspective of a single access decision

point within a larger distributed ABAC authorization system (which would include multiple such

decision points amongst other distributed components). Attributes of objects and environment and

the policy are presumed to be known with high assurance to the decision point. Our focus is on

subject attributes in this dissertation. As previously discussed, subject attributes could be either

mutable or immutable. The decision point is the entity which checks the policy and determines

the set of attributes whose values should satisfy policy requirements. We call this set relevant

attributes set or relevant attributes for short, following previous studies [116, 183, 185], which

could be distributed over multiple attribute providers. The set of relevant attributes might change

over time as the decision point examines the policy expression which we assume is expressed in

Disjunctive Normal Form. If an attribute’s value does not fulfil policy requirements, it would be

replaced with the next conjunct in the same clause, so the set of relevant attributes changes.

Definition 4. We call the set of relevant attributes to the policy P at time t determined by decision

point DP , the view of the decision point at time t and denote it as V P,t
DP .

3.4.2 Use Case Scenarios

In this section we discuss two sets of practical use case scenarios to illustrate how utilizing the

conferred access may require updating mutable subject attributes. These use cases are provided

in the context of ABAC and are amenable to quota-based approaches. Throughout use case ex-

planations we use a quota-based solution to manage concurrent accesses of users to service in-

stances which is a well-established approach to handle concurrency in distributed environments.

We consider pre-authorization and pre-obligation models with respect to UCON. In order to ex-

plain each use case we follow UCON notation of [150]. Moreover, we define the following sym-

60

Figure 3.12: Centralized Approach to Manage Global Limit: a) service-based b) user-based

bols to describe our use cases. U and S represent the set of all users and services in the system

respectively. Each concurrent session of the user is shown as a User Instance (UI) (a.k.a subject).

Considering the service as the object in our system, we represent each service instance as a Ser-

vice Instance Object (SIO). The number of existing sessions is treated as a user’s attribute which

ought to appropriately change as new sessions are created or terminated while using the service.

ATT (.) indicates the set of attributes for the entity enclosed in parenthesis. X.Y denotes attribute

Y of the entity X. preUpdate(.) and postUpdate(.) indicate functions which have to be done to up-

date attribute values before usage is started and after usage is terminated respectively. The notation

allowed(s, o, a) ⇒ indicates necessary requirements for subject s to be allowed to do action a on

object o.

Centralized Approach

AA distributes attribute values among entities to be used during access evaluation and utilization,

so dissemination is done in a centralized way under a single authority. This strategy makes the

AA as the single point of failure which monitors and tracks assigned limits. Attribution of the

assigned portion could be done for all users of a specific service, a.k.a service-based, or it could

be user-centric, a.k.a user-based, as follows. Either of the following two approaches could also

be changed to be processed as a global countdown limit, which means the global limit would be

consumable and would not be refunded after each usage.

61

1. Service-Based Distribution: In this type of distribution a global limit is assigned for all

users of a service. The AA would manage sharing the service among different users scattered

throughout local or distributed locations. Formal specification of this method is shown in

Figure 3.12(a). As an example, an Internet Service Provider supplies internet connection

to hotel rooms. Regardless of which users/devices are connected to the internet, the central

server would set a usage global limit on the service it provides to the hotel.

2. User-Based Distribution: This strategy disseminates the global limit between different

users of a service. The global limit can determine the maximum number of service usage

per user. As an example a subscriber to a service could have up to M concurrent sessions

for using that service. Each time a user wants to start/end utilization of the service, AA

would check the prerequisites (if any) and update mutable attributes accordingly. Formal

specification is given in Figure 3.12(b).

Distributed Quota-Based Approach

Although a centralized approach provides the benefit of avoiding inconsistency because of its cen-

tral management, it presents scalability and fault tolerance difficulties. To provide a system with

better fault tolerance and to avoid AA from becoming the single point of failure, a distributed

approach could be exploited. In this approach, a global limit which has been assigned to every

mutable attribute would be distributed among some local servers which delegate their assigned

share as quotas to each service/user throughout access assessment and practice. Furthermore, this

limit could be allocated using a service-centric or user-centric approach as follows.

1. Service-Based Quota Distribution: A global limit would be set per service to be used by

different users. This limit would be delegated to different service providers in the distributed

environment which then could be allocated to different users of the system per request. As

an example, consider a Software as a Service (SaaS) [201] which provides all users from a

university’s IP address up to a total of M concurrent sessions to use the software. Then the

global limit could be further distributed among Service Instance Objects (SIO) as quotas to

62

Figure 3.13: Distributed Approach to Manage Global Limit: a) service-based b) user-based

be assigned to different colleges and departments which could be managed locally. Formal

specification is provided in Figure 3.13(a).

2. User-Based Quota Distribution: In this approach a global limit would be allocated to local

servers for each user. The global limit determines the maximum number of simultaneous

service usage a user can have. A user (U) can have multiple concurrent user instances (UI)

which is created with a predetermined share (ui .Quota) of its parent’s (the user who created

that UI) global limit. The sum of all assigned quotas to different user instances cannot

exceed their parent global limit. As an instance, a subscriber to a TV channel can have up

to 5 concurrent live sessions and then this global limit can be used on different devices to

watch that channel. Formal specification is provided in Figure 3.13(b).

To delete one of the user’s user instances, we enforce one of the two following approaches to ensure

the assigned quota to deleted user instances would be set free for further utilization.

• user instance which the user wants to be deleted, should have no service utilization

63

(ui .usageCount = 0).

• terminate all services which are being practiced by to-be-deleted user instances. To satisfy

this requirement, we enforce an obligation to be fulfilled by the user to first discontinue all

user instance services and then proceed to delete the user instance. This approach has been

used in Figure 3.13(b).

The quota upper limit could also be set as a countdown limit which conveys that the quota is

non-refundable after usage termination.

Distributed vs. Centralized Quota Management

Each of centralized and distributed quota management approaches discussed above has its own

advantages and drawbacks. In the rest of this section, we provide some properties of each method

of quota management to compare their pros and cons.

Property1. Centralized quota management provides correct access control decisions.

Proof. In the centralized approach, all required attribute credentials are kept in one place which

is a highly assured AA. As long as there is no network failure and post updates could succeed,

this would result in granting access only when it is correct based upon the policy. Nevertheless,

underlying information could be always incorrect or attacked, but we consider that out of scope of

this research.

Property2. Distributed quota management approach provides less availability and less utilization,

compared to the centralized approach.

Proof. It is possible to block an access in the distributed approach due to lack of available quota,

while it would be conferred in the centralized approach. In a distributed approach, the global limit

of every attribute is dispersed between local distributors (servers) as quotas. If an access permission

requires assessing a specific attribute, access would be granted provided a spare quota is available.

If not, access would be denied. This could happen even if there are some spare quotas for the same

attribute sitting unused on other servers. If this request was delivered to a system with a centralized

quota management, access would not be denied as long as there is any available spare quota and it

64

Figure 3.14: Revocation vs. Refresh [183]

would be allocated as the global limit is managed centrally by the AA. So, even while post updates

succeed, distributed approach could be deficient in availability and resource utilization compared

to centralized approach.

Property3. Distributed quota management access provision is correct.

Proof. Based on Property2, a distributed approach would provide less availability compared with

a centralized approach. This conveys less access would be granted while applying a distributed

approach. In other words, granted accesses in a distributed method is a subset of accesses granted

in centralized one, which are correct based on Property1.

3.4.3 Consistency Levels for Distributed Quota-Based Distribution Methods

In this section we only look at the refresh-based solution as revocation is not applicable that which

we discuss in Subsection 3.4.3. Subsection 3.4.3 accentuates the fact that the consistency problem

would arise only when multiple (more than one) attributes are included in the view of decision

point. Two consistency levels in Subsection 3.4.4 are provided to reduce decision point exposure

to outdated values while its view contains both mutable and immutable attributes, recognizing that

mutable attributes would increase the risk of exposure to stale values, a.k.a safety and consistency

problem.

Revocation vs. Refresh

Authors in [183] compared the two possible ways to obtain latest attribute values as shown in

Figure 3.14. While in revocation it is only possible to check if attribute credential is either valid or

revoked, in the refresh scenario new values of attributes could be returned in case of any changes

65

other than revocation. So instead of only invalidating the old value, the new value would be

communicated to the requesting party. Taking mutability into account, the decision point needs

to be updated by recent values of relevant attributes. Since revocation check only evaluates the

validation of previous attribute values, it is appropriate only for immutable attributes which solely

could be updated by administrative actions. If used for mutable attributes, revocation check is

useful only if the attribute value has been revoked, but any changes in the value would not be

reflected in revocation check response. Both revocation and refresh scenarios are considered as

pulling approaches, in which the recent attribute value information will be recovered via querying

AA. We consider the refresh scenario to be appropriate to obtain the freshest values of attributes in

this work. However, if the global limit changes, there should be a pushing mechanism from AA to

distributing servers to make them aware of the change. Consideration of this latter mechanism is

out of scope for this research.

Consistency Considerations for Mutable Attributes

Consistency problem arises when the decision point needs more than one attribute value to make

an access decision. We call the set of required attributes to make an access decision relevant at-

tributes as specified in Definition 4. Practical use cases compliant to quota-based approach have

been discussed in Section 3.4.2, all of which consider only one mutable attribute. When relevant

attributes include more than one attribute, there is always the risk of some attribute values be-

ing outdated while the decision point is trying to acquire other attributes’ values from distributed

attribute authorities. Previous research has been done toward definition of different consistency

levels by imposing restrictions on timeliness of attribute checks [183, 185], but all attributes pre-

sumed to be immutable. The following example demonstrates the consistency problem when the

set of relevant attributes include more than one attribute which also includes a mutable attribute as

well.

Example. A user tries to create a backup of his phone contents on Apple iCloud. To grant access

to iCloud storage, the decision point needs to confirm the validity of Apple ID which is considered

66

Table 3.3: Summary Table of Symbols

Symbol Meaning
treq request time
td decision time
cmi ithcredential which is mutable
cimi ithcredential which is immutable
ci ithcredential, regardless of being mutable/immutable
tiref,k time of k-th refresh of cimi
tiupdate,k time of k-th refresh of cmi
tistart,k attribute start time of ci after k-th refresh
tiend,k attribute expiration time of ci after k-th refresh
kmax(t) latest refresh of ci before time t (ci is determined by context)
valikmax(t) the value of ci after kmax(t)-th refresh
tiref,kmax(t) time of kmax(t)-th refresh of cimi
tiupdate,kmax(t) time of kmax(t)-th refresh of cmi
tistart,kmax(t) attribute start time of ci after kmax(t)-th refresh
tiend,kmax(t) attribute expiration time of ci after kmax(t)-th refresh

as an immutable attribute as well as remaining storage assigned to that ID as a mutable attribute.

Suppose a scenario in which the Apple ID has been validated previously and the decision point

tries to check the remaining iCloud storage. It is possible that Apple ID has been invalidated

while trying to acquire remaining storage, which indicates an inconsistency situation. The reverse

order of checks is also possible to cause the consistency problem where iCloud storage has been

consumed up with content from other devices connected to the same Apple ID, while checking the

authenticity of the ID.

3.4.4 Formal Specification of Consistency Levels

Before defining formal consistency levels, we emphasize that mutable attributes would be updated

more frequently than immutable ones. As a justification, we remind the reader of the definition of

each category of attributes. Immutable attributes are assigned and only could be changed by ad-

ministrative actions, however mutable attribute values could change as a side effect of each access

utilization. Since any access could change the relevant mutable attributes values, it is reasonable to

67

assume mutable attribute changes more frequently. Based on the previous statement, unlike what

has been defined in previous works to define consistency levels based on different recommended

freshness/validity overlaps, we would not assume the same degree of freedom for system adminis-

trators to decide lower levels of freshness overlap to be provided to the decision point. So, at least

all of the mutable attributes have to be refreshed after the request is submitted to the decision point.

It is notable that we consider the request time as the anchor point in that it is the closest recog-

nizable point in time to the decision time and we want to check the value of mutable attributes at

the closest possible point to the decision time. Nonetheless for immutable attributes we could rely

on refresh results which have been done before the request time. In contrast to mutable attribute

values which are available locally at local distributors in a distributed approach and so could be

updated at any arbitrary time, immutable attributes updates require the decision point to consult

the AA which might not be possible at any desired time in distributed environments. That said we

can give more freedom about timeliness of immutable attributes. However, simultaneous freshness

of mutable and immutable attributes might not necessarily be provided. We propose two levels

of consistency assuming the set of relevant attributes includes both mutable and immutable at-

tributes as the most general case. Following [183], Table 3.3 shows required symbols with a brief

explanation of each.

Lifetime Overlap Level

This level of consistency guarantees that all relevant credentials would be overlapping in their

lifetimes. It also provides the decision point with the freshest value of relevant mutable attributes

at the decision time. However immutable attributes freshness cannot be assured as it may not be

possible to refresh them after the request time. So, immutable attribute values might be outdated

but correct in the past. Decision point would rely on values of latest available refresh results

for immutable attribute credentials whenever refresh after request is unfeasible. Yet, refreshing

mutable attribute credentials after request time is indispensable, in that their values could have

been altered since last refresh as the usage side effect.

68

Figure 3.15: Lifetime Overlap Consistency Level

The decision point in Figure 3.15 relies on three attributes, the first of which is mutable and

two others are immutable. As depicted the mutable attribute has been refreshed after the access

request, however for mutable attributes the latest refresh results, which have been acquired before

the request time, have been used.Formal specification of this level is as follows.

Specification. Every immutable attribute has to be refreshed at least once before the decision time

and found to be fresh. Every mutable attribute has to be refreshed at least once after the request

time and before the decision time and found fresh based on the latest refresh results.

LifetimeOverlap(V P,td
DP) ⇐⇒ (∀cimi ∈ V P,td

DP)(∃t t ≤ td)

[(max
∀ci∈V

P,td
DP

tistart,kmax(t) ≤ tiref,kmax(t) < min
∀ci∈V

P,td
DP

tiend,kmax(t)) ∧ Fresh(ci, t
i
ref,kmax(t))]

∧ (∀cmi ∈ V P,td
DP)(∃t′ treq ≤ t′ ≤ td)

[(max
∀ci∈V

P,td
DP

tistart,kmax(t′) ≤ treq ≤ tiupdate,kmax(t′) < min
∀ci∈V

P,td
DP

tiend,kmax(t′)) ∧ Fresh(cmi , tiupdate,kmax(td)
)]

∧ max
∀ci∈V

P,td
DP

tistart,kmax(td)
< td < min

∀ci∈V
P,td
DP

tiend,kmax(td)

(3.13)

Property1. All relevant attributes lifetime intervals would overlap.

Proof. Based on Equation 3.13, all credentials would be refreshed when other credentials are

69

Figure 3.16: Freshness Overlap Consistency Level

in their lifetimes. Moreover, decision time lies in the last known lifetime interval for all rele-

vant credentials at the decision time, as stated in the last part of Equation 3.13. This conveys at

least one point (td) lies in intersection of all credentials lifetimes. So, all lifetimes would overlap

in [max∀ci∈V
P,td
DP

tistart,kmax(td)
,min∀ci∈V

P,td
DP

tiend,kmax(td)
]. Although there is no guarantee for simul-

taneous freshness of all relevant credentials, Figure 3.15 depicts a lucky situation in which all

credentials are fresh during [t1start,1, t
2
ref,2]. But even in this case there is no simultaneous freshness

of all attributes after the request time.

Freshness Overlap Level

This level of consistency guarantees that all relevant credentials would be fresh simultaneously

after the access request turned into the system. It requires all relevant credentials, including both

mutable and immutable, to be refreshed after request time. As depicted in Figure 3.16, three

attributes have been considered to be relevant, first of which is mutable and two others are im-

mutable. All three relevant attributes have been refreshed after the request time which supplies the

decision point with the freshest values of each relevant credential while all freshness intervals are

guaranteed to overlap after the request time. Following is the formal specification of this level.

70

Figure 3.17: Start Time Has Fallen After Request Time

Specification. Every credential has to be refreshed after request time and before the decision time.

It is required for all relevant credentials to be started at or before the request time. So, simultaneous

freshness of all relevant attributes is guaranteed. If some credentials start time fall after the request

time, both mutable and immutable attributes would be assured to be fresh at some time interval

after the request time but simultaneousness of freshness intervals is not assured. So, we restrict the

start times to fall at/before request time.

FreshnessOverlap(V P,td
DP) ⇐⇒ (∃t treq < t ≤ td)

[(∀cimi ∈ V P,td
DP)(tistart,kmax(t) ≤ treq < tiref,kmax(t))

∧ (max
∀ci∈V

P,td
DP

tistart,kmax(t) ≤ tiref,kmax(t) < min
∀ci∈V

P,td
DP

tiend,kmax(t)) ∧ Fresh(cimi , tiref,kmax(t))]

[(∀cmi ∈ V P,td
DP)(tistart,kmax(t) ≤ treq < tiupdate,kmax(t))

∧ (max
∀ci∈V

P,td
DP

tistart,kmax(t) ≤ tiupdate,kmax(t) < min
∀ci∈V

P,td
DP

tiend,kmax(t)) ∧ Fresh(cmi , tiupdate,kmax(td)
)]

∧ max
∀ci∈V

P,td
DP

tistart,kmax(td)
< td < min

∀ci∈V
P,td
DP

tiend,kmax(td)

(3.14)

Property1. All relevant credentials would be simultaneously fresh during a time interval before

the decision time which includes the request time.

71

Proof. All credentials have to be refreshed after request time and before decision time. Also

the latest start time of all credentials should happen before/at the request time. So all creden-

tials would be simultaneously fresh during [max∀ci∈V
P,td
DP

tistart,kmax(t),min∀ci∈V
P,td
DP

tiref,kmax(t)] time

interval which includes the request time.

Property2. Every view at Freshness Overlap level would be at Lifetime Overlap level as well.

Proof. This property is obvious, since the freshness interval for every credential is a sub-interval

of its lifetime interval. Therefore, when there is freshness overlap, lifetime overlap is self-evident.

Property3. Not every view at Lifetime Overlap level is at Freshness Overlap level as well.

Proof. As presented before, at the Lifetime Overlap level it is possible to have some immutable

attributes with refresh time even before the request time. On the contrary, to be at Freshness

Overlap level, every immutable credential requires to be updated at least once after the request

time. Thus although the lifetimes would overlap based on the last condition stated in Eq. 3.13,

freshness overlap could not be guaranteed.

Tip. It is significant to note that enforcing the start time of refreshed attributes to lie before the

request time (tistart,kmax(t) ≤ treq < tiref,kmax(t)) is the key requirement in this level. Otherwise it is

possible to have non-overlapping freshness intervals although all credentials have been found fresh

after the request time. For example, as seen in Figure 3.17, latest start time of cim2 has fallen after

request time (t2start,3 > treq) and its freshness does not overlap with freshness interval of other two

credentials.

3.4.5 Smart Home Use Case

Suppose in a smart home IoT parents want to limit the access of each kid to PlayStation to week-

ends, not exceeding 120 minutes (2 hours). Continuous control over the amount of time is not

possible unless considering the playtime upper bound as a mutable attribute, because we expect

playing time to be subtracted from the set upper bound. The upper bound would be set administra-

tively by parents, however it could be changed as kids utilize their playtime, say as the side effect

of user’s usage. Following is a simple attribute-based policy example:

72

Table 3.4: Centralized User-Based Quota Management: Smart Home Use Case

U, S : set of Users and Services repectively. 7→ U = Alex ,S : {PlayStationRemotePlay}
UI: set of User Instances. 7→ UI: set of account activations on different devices
ATT (U) = {globalLimit ,UISet}
ATT (UI) = {Quota, usageCount}
globalLimit : U → {1, 2, ..., N} 7→ globalLimit : Alex → {1 , 2 , ..., 120}
UISet : U → 2UI 7→ UISet = {accountsonmacbook , laptop,PS4}
Quota : UI → {0, 1, 2, ...,M} 7→ each account on a device can have its quota
usageCount : UI → {0, 1, 2, ..., C} 7→ usageCount = {0 , 1 , ..., playtime}
allowed(u, ui , create(q)) → ((q ≤ u.globalLimit) ∧ (u.globalLimit − Σ∀ui∈u.UISetui .Quota) > q
preUpdate(ui .Quota) : ui .Quota = q
preUpdate(ui .usageCount) : ui .usageCount = 0
preUpdate(u.UISet) : u.UISet = u.UISet ∪ {ui}
preOBL ⊂ OBS ×OBO ×OB
OBS = {ui},OBO = {s},OB = {enduse}
getPreOBL : U ×UI × delete → {True,False}
preFulfilled : OBS ×OBO ×OB → {True,False}
getPreOBL(u, ui , delete) = allowed(ui , s, enduse)
allowed(u, ui , delete) → preFulfilled(getPreOBL(u, ui , delete))
postUpdate(u.UISet) : u.UISet = u.UISet \ ui
allowed(ui , s, utilize) → ui .usageCount < ui .Quota
preUpdate(ui .usageCount) : ui .usageCount = ui .usageCount + 1
allowed(ui , s, enduse) → True
postUpdate(ui .usageCount) : ui .usageCount = ui .usageCount − 1

73

Figure 3.18: Smart Home Use Case: Freshness Overlap Required

(s : user , o : playstation, op : operation) ⇐⇒ (u.quota > 0) ∧ ((u.role = ”parent”) ∨

(u.role = ”kid”)) ∧ day_of _week ∈ {Saturday , Sunday}

In this example we considered the quota distribution to be done as centralized, as mentioned

in Section 3.4.2. Since parents are considered to be the only home administrators, utilizing the

centralized approach looks common-sense. Moreover, we opt for user-based, as parents aim for

setting the upper bound of playtime for each user, say kids. Formal specification of this approach

has been represented in Table 3.4 in which each item has been mapped into its correspondent in

our use case.

To determine which level of consistency is required to be imposed by the decision point con-

sider the following example. Imagine Alex, who has the kid role, wants to continue playing on

Monday. If the decision point opt for lifetime overlap level, and because of intermittent connection

cannot update its calendar, it may rely on previously cached information and let the kid play. How-

ever, the freshness overlap level requires all credentials to have an overlapping freshness interval.

Therefore, in case of intermittent connection the decision point cannot proceed. If the connection

problem resolves, because of the desired level of consistency, the decision point would realize the

day of the week and deny Alex access, as it should do. This situation has been represented in

Figure 3.18.

74

3.5 Discussion: Model Properties and Limitations

In this chapter we formulated different levels of consistency in distributed multi-authority attribute-

based access control environments. This section discusses some properties and restrictions of

presented consistency levels in each context.

3.5.1 Safety and Consistency of Subject Attributes for Attribute-Based Pre-Authorization

Systems

Implementation Implications

Higher level of consistency requires additional checks. There is a tradeoff between the safety

assurance provided by higher levels and cost of additional checks, as follows.

• From incremental/internal to r-incremental: the end times relate to decision time, so addi-

tional check of end time is required at the decision point in r-incremental.

• From r-incremental to interval: it potentially requires additional revocation checks, because

all relevant credentials have to be checked at least once for their latest revocation status after

all credentials have been started.

• From interval to forward-looking: all credentials definitely need to be checked for revocation

status after the request time.

Quantitative performance evaluation is beyond the scope of this paper. It would require concrete

system and workload assumptions and would be specific to the particular context.

Short-lived Credentials

Short-lived credentials are used to obviate the need for revocation check by keeping credential

lifetime very small. For our purpose we assume there is an implicit revocation check at start time,

otherwise the AA would not issue the credential. No further revocation check is possible. In this

case r-incremental and interval consistency will be equivalent. Forward-looking consistency could

75

be guaranteed only if the request time has pushed prior to the start time for all credentials. The

practical implication is that the decision point would need to assemble required subject credentials

from appropriate AAs after the request time.

Considering Enforcement Time

After the decision point makes the access decision, it will be enforced by an enforcement point

which could be the same or a different entity than the decision point. We certainly know that

td < te. Proposed consistency levels in this paper remain unaffected by taking enforcement time

into account. From another standpoint, if there is a large gap between the decision and enforcement

time, it is possible to utilize an access while some of the corresponding credentials have expired;

this is more probable in case of short-lived credentials. So, we can add more constraints to con-

sistency level specifications which restricts this gap as follows: te ≤ min∀ci∈V
P,td
DP

tiend. Therefore,

enforcement time could be considered to extend proposed levels of consistency.

3.5.2 Refresh Instead of Revoke Enhances Safety and Availability

We presented three levels of consistency, where each higher level provides enhanced availability

and safety at the cost of refreshing more frequently. We compared the qualitative benefits of each

level. Quantifying cost-benefit is highly implementation and application specific, and is beyond

the scope of this research. Furthermore, there are issues related to managing the risks inherent to

applying ABAC in a distributed environment, since ABAC introduces new challenges in selecting

appropriate trust models [99]. Finally, the formal correctness and appropriateness of the proposed

criteria notwithstanding, the underlying information could be vulnerable to attack. The attack

models would depend on the particular protocols and data structures used to implement credential

transfer and refresh. As such they are out of scope for an abstract framework.

76

3.5.3 Safety and Consistency of Mutable Attributes Using Quotas

To tackle concurrent usage of mutable attributes in a distributed environment we propose two cate-

gories of practical scenarios, from which we justified the distributed approach to be a better match

with modern system environments and requirements. We further discuss two types of service-based

and user-based subcategories. Both subcategories of distributed approach are amenable to quota-

based approach. Formal specification of use cases have been proposed relying on nomenclature

of UCON [150] paper. We assert that revocation check is inappropriate given mutable attributes

values would be changing frequently and new values of them have to be sought and utilized in the

decision making process. Therefore, refresh should be used to pull recent values of attributes from

attribute authorities.

77

Chapter 4: USER-TO-DEVICE ADMINISTRATION OF ACCESS IN

SMART HOME IOT ENVIRONMENTS

In this chapter, we propose an RBAC administrative model to govern authorization assignments

for underlying operational access control model in a smart home IoT environments. Our model

specifically addresses the administration of extended generalized role based access control (EGR-

BAC) [24] for smart home IoT. Proposed administrative model could be simply extended to man-

age other more sophisticated access control models with similar dynamics. We augment our pro-

posed model by providing use case scenarios for both operational and administrative models. We

propose a decentralized, ledger-based, publish-subscribe based architecture for administration of

access in a smart home IoT environment to preside at the assignments of underlying operational

authorizations. Proposed architecture is endorsed by a proof-of-concept implementation, which

utilizes smart contracts to ensure the integrity of administration supplemented by intrinsic benefits

of blockchain to be distributed and transparent. Results of this research have been published in

following two peer-reviewed papers:

1. Mehrnoosh Shakarami, and Ravi Sandhu. "Role-Based Administration of Role-Based Smart

Home IoT", In Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-

Physical Systems, pp. 49-58. 2021.

2. Mehrnoosh Shakarami, James Benson, and Ravi Sandhu. "Blockchain-Based Administra-

tion of Access in Smart Home IoT", In Proceedings of the 2022 ACM Workshop on Secure

and Trustworthy Cyber-Physical Systems, pp. 57-66. 2022.

4.1 Role-Based Administration of Role-Based Smart Home IoT

In this section, we propose a role-based administrative model corresponding to the EGRBAC op-

erational model to govern authorization functionalities, through management of important assign-

ments in the operational model.

78

4.1.1 Motivation

There is a rich body of research on security of IoT [27, 29, 90, 131, 211]. Authors in [148, 157,

160,161] review the access control requirements and approaches to protect security and privacy of

IoT. Security of a smart home environment, as a specific application of IoT, has been investigated

in [58, 215]. Common to all of these studies, access control has been recognized as a critical

requirement to build a secure IoT environment.

Overall system’s security mainly depends on both operational and administrative access control

models. Administrative policies determine who can make changes to the current authorization state

of the system. Administrative aspects of access control is one the most important, yet least studied

areas of access control, specifically when it is required to be done in a distributed manner [120,

173]. In IoT environments, specifically when users are mostly not expected to be IT professionals,

the usability of access policy administration is an important feature to be taken care of. In a smart

home IoT environment, we want access management to be easy to use and minimize the required

effort for house administrators (i.e. house owners/parents). For instance, access management

should not impose admins to define a new policy every time a new IoT device is added to the

house. It also should not be complicated, so common users with minimum IT specialty can utilize

it.

Intrinsic benefits of Role-Based Access Control (RBAC) such as its policy neutrality, adherence

to least privilege principle and its built-in support for Static and Dynamic Separation of Duty

(SSoD and DSoD), made it a preferred choice in prior research works in order to establish an

access control model for mediating access to users in a smart home, using the concept of a role [20,

24, 187, 198]. One of the improvements that RBAC made on its predecessor models is its ease

of management. After an operational RBAC model has been established, the administration is

facilitated by assigning different users to define roles or making changes to existing role sets of the

system. However, the notion of an administrative model is not included in the NIST standard [76]

nor the seminal RBAC [172] models. Administrative RBAC (ARBAC) was first proposed as an

approach to use RBAC itself to manage different aspects of RBAC [170]. To date, surprisingly

79

little attention has been paid to design administrative models in IoT environments, despite the

specific requirements for their corresponding operational access control models. In particular, the

need to design administrative models arise dealing with IoT environments where users and devices

are constrained.

4.1.2 An RBAC Administrative Model for Smart Home IoT

Our model specifically addresses the administration of EGRBAC [24]. However, it could be simply

extended to manage other more sophisticated access control models with similar dynamics. The

use of RBAC for RBAC administration enables us to separate governing of different assignments

in corresponding operational model. In case of EGRBAC (as our operational model), we have dif-

ferent relations to be administered including assigning users to roles, defining new environmental

conditions, introducing new role pairs and assignment of device roles to role pairs, each of which

could be a component of administration.

We classify possible changes in smart home environment into three classes which need to be

administered.

1. New User Added: A new individual could join to the set of smart home users any time,

which consequently needs administrative changes to be done such as defining a new role, an

environment role or a role pair. We recognize adding a new user to be an infrequent event.

So, we consider this case orthogonal to central focus of this paper. Its administration would

be centralized, say, in the homeowner.

2. New Device Added: Adding a new device is likely to happen increasingly frequently, con-

sidering the surge in smart home devices to be available nowadays. This change should be

reflected in access control model by defining new device roles, making changes to current

PDRA assignment or new assignments of permission to device roles through adding new

PDRA relations. Establishment of new access control policies through managing RPDRA,

is also a plausible administration requirement. In this paper, we focus on governing RPDRA

and PDRA to address these requirements. We assume making changes in an existing device

80

role or defining a new device role is centrally managed in some way.

3. Modify Current Assignments: Sometimes it is required to change current assignments in a

smart home, even if there is no change in the set of users or devices. For instance, adding

a new constraint for assigning a device role to a role pair (modify RPDRA), changing the

set of (device, permission) pairs which have been assigned to a device role (modify PDRA).

Modifying current PDRA sometimes is required as a result of adding a new device to the

system, by adding new (device, permission) pairs to current PDRA. We focus on PRDA and

RPDRA administrative modifications. Although other assignment changes are plausible to

be required, e.g. change a user’s role (UA modification), we consider those changes out of

scope.

We recognize administration to be best done if it is decentralized. Centralized administration

generates a single point of failure. Moreover, even in a small environment like a smart home, de-

centralized administration is worthy to consider. Suppose one of the administrator users are not

available to manage/delegate the access control authorizations. A decentralized approach would

bring the benefit of presence of another assigned administrator user who could do the task. Decen-

tralized administration also helps to improve user’s privacy by defining all permissions to manage

a user’s privacy zone contained in a separate administrative unit, and specify that user as the only

possible user who could be assigned to the correspondent administrative role. In this paper, decen-

tralization has been applied on two assignment relations (PDRA and RPDRA) in EGRBAC. We

develop a formal description of administrative concepts and constraints in the following.

Proposed Administrative Model in More Detail

Access control is embodied in different authorization assignments of the EGRBAC model, includ-

ing UA, RPRA, PDRA, RPDRA, etc. These components collectively would establish the access

control policy of the system. In this paper, we first focus on the RPDRA assignment through which

device roles would be assigned to role pairs and considered as the central step of access policy es-

tablishment. Our administrative model focuses on managing the operational access control model

81

in a way that any legitimate user in the smart home environment only has access to what s/he is

authorized to access. In other words, insider threats are limited such that our system observes the

least privilege principle1 while managing the authorization assignments.

In order to design our administrative model to be decentralized, we use the abstract of Ad-

ministrative Unit (AU), which is a core component of decentralization in our model. As indicated

in [172], it highly matters how to scope the administrative authority conferred to administrative

roles. In our model, each administrative unit contains a unique specific Administrative Roles (AR)

and a set of Administrative Tasks (AT). In other words, each administrative role is authorized to

manage the administrative tasks within a given administrative unit. This authorization is scoped

as a set of administrative tasks defined to manage corresponding assignments in an operational

model.

The introduced concept of administrative unit in our work is comparable to the abstract of

administrative scope introduced in ARH [54], which "informally associates each role in the role

hierarchy to the set of roles over which it has control". However, there is a twofold distinction

between these concepts: first, similar to ARBAC97 [170], we assume administrative roles are

separate from regular roles, while in ARH administrative roles are a set of regular roles in the

system augmented with administrative authorities. Second, ARH is focused on role hierarchy

administration. It considers Role-Role relation in RBAC model, in contrast to our administrative

model which has a dissimilar underlying operational model and designed to manage different kinds

of assignments.

We propose a basic administrative model to manage RPDRA in the operational model, and

then extend it to a more generic model which is able to also manage PDRA. This extension could

be generalized to construct a comprehensive administrative model which is able to manage all as-

signments in the operational model. We define one administrative unit per operational assignment

to be managed, which includes a unique administrative role and a set of administrative tasks, as

follows. The set of Administrative Tasks reflects the scope of control which is potentially available

1https://us-cert.cisa.gov/bsi/articles/knowledge/principles/least-privilege

82

Figure 4.1: Administrative Model

to each AU’s administrative roles.

RPDRA Administration In order to manage RPDRA, each Administrative Task is defined as a

set which itself contains two sets: a set of Device Roles (DR), which is a subset of available device

roles defined in the system and a set of Role Pairs (RP) which is a subset of available RPs in the

system.

PDRA Administration For managing PDRA relation, each Administrative Task is defined as a

set which includes two sets: a subset of Device Roles (DR) and a subset of permissions (P).

Formal Definition of Proposed Model

In this section, we present most notable features of our model via formalism. Formal definitions

have been also presented in Table 4.1. Core components include the concepts of Adminis-

trator Users (AUser), Administrative Roles (AR), Administrative Unit (AU), Administrative Task

83

Table 4.1: Administrative Model Formalization

Core Components
−AUser ⊂ U is a set of administrator users.
−AR is a set of administrative roles, authorized to manage a specified subset of RPDRA.
−AUA ⊂ AUser ×AR is a many to many administrator user to administrative role assignment.
−AU is a set of administrative units.
−AT ⊆ (2RP × 2DR)\ProhibitedAssignment is a set of administrative tasks, which contains all pairs
of cross product of a subset of RP , and a a subset of DR, but a set of Prohibited Assignments has
to be excluded.

Administrative Constraint
−ProhibitedAssignment is a set of prohibited (rp, dr) pairs each of which is a member of possible
pairs of assignment but specified to be forbidden by design, (Constratints ⊂ RP ×DR).

Administrative Authorization
−ARATA ⊆ AR × AT is a one to one AR to AT assignment determining the scope of administrative
control for a given AR.
−ARAUA ⊆ AR×AU is a one to one AR to AU assignment, determines which AU is under control of
a given AR.

Derived Administrative Relations
−ARat∈AT ⊂ AT × AR : ARat = ar ∈ AR : at ∈ ARATA(ar): many to one administrative task to
administrative role function which determines which ar can manage this at.
−RolePairat∈AT ⊆ 2RP determines which role pairs are included in a given administrative task.
−DeviceRoleat∈AT ⊆ 2DR discovers the device roles which are included in a given administrative task.
−InclusiveTask((rp, dr)) ⊆ (rp ∈ RP, dr ∈ DR) × {AT ∪ FALSE} determines the association
of a (rp, dr) to an administrative task, at, if this pair is currently defined as a member of that
administrative task, if no inclusive administrative task found, it returns FALSE.

Check Access Predicate
−ASSIGNRPDR(auser ∈ AUser, ar ∈ AR, rp ∈ RP, dr ∈ DR) ≡ (((auser, ar) ∈ AUA) ∧ (at =
InclusiveTask(rp,dr) ∧ ar = ARat) ∧ ((rp, dr) /∈ RPDRA)) ⇒ RPDRA′ = RPDRA ∪ (rp, dr)
−REVOKERPDR(auser ∈ AUser, ar ∈ AR, rp ∈ RP, dr ∈ DR) ≡ (((auser, ar) ∈ AUA) ∧ (at =
InclusiveTask(rp,dr) ∧ ar = ARat) ∧ ((rp, dr) ∈ RPDRA)) ⇒ RPDRA′ = RPDRA\(rp, dr)

84

(AT) and Administrative User Assignment (AUA).

Administrator Users (AUser) are a subset of regular users, with administrative authorizations.

Administrator users would be recognized by their assignment to Administrative Roles (AR). Ad-

ministrative User Assignment (AUA) is a relation which assigns administrator users to admin-

istrative roles. Administrative Unit (AU) is an abstraction to represent a unit of administration,

which contains the scope of management of its contained AR. Each Administrative Unit (AU)

includes two components, a uniquely associated AR and a subset of possible authorization assign-

ments, namely Administrative Tasks (AT). Any AR included in an AU is permitted to manage

any of the possible authorization assignments included in its corresponding AT. For instance, if

a Homeowner assigned to be the AR of an AU and scheduling the thermostat is in-

cluded in the AT included in the same AU, it implies that any user with Homeowner role would

be authorized to manage thermostat schedule.

We define Administrative Constraint as a set of prohibited assignments which in-

dicate denial of access instead of conferring it. That is negative permissions are modeled as con-

straints in our system. For instance, babysitter does not need and should not be granted access to

the thermostat’s schedule. Administrative Authorizations indicate the relation defined

in order to assign of AT to AR (defining the scope of control of AR) and AR to AU (indicating the

Administrator Role in an Administrative Unit). ARATA is Administrative Role to Administrative

Task assignment, which is a one to one relation, which means only one AR could be authorized to

activate authorizations included in corresponding AT. ARAUA is Administrative Role to Admin-

istrative Unit Assignment, which is a one-to-one relation, that means no more than one AR can be

assigned to an AU. So, both AT and AU are uniquely associated to an AR. It is notable that it is

always possible to assign more than one user to an AR.

Derived Administrative Relations are a set of functions used to retrieve adminis-

trative relations between different components of the model. These functions could be later utilized

to evaluate a constraint which should be sustained in all assignments/ revocations. ARat∈AT indi-

cates the AR which has control over specified at. To determine role pairs and device roles which

85

are included in an administrative task, functions RolePairat∈AT and DeviceRoleat∈AT could be

used correspondingly. InclusiveTask((rp, dr)) function finds out the administrative task within

which the given pair of device role and role pair are included. Our model components have been

depicted in Figure 4.1.

Authorization Functionswhich are represented in bottom part of Table 4.1, determin-

ing the conditions that qualify an administrator user to do assignments/revocation which completes

the operational model’s access policy. Proposed authorization functions decouple assignment and

revocation of a specific (rp, dr), which means there is no requirement for the revoking user to be

the same user who granted a specific access.

Function ASSIGNRPDR(auser ∈ AUser, ar ∈ AR, rp ∈ RP, dr ∈ DR) enables a user

auser with ar role to add the (rp, dr) to the set of RPDRA of operational model. This means

the device role dr would be assigned to the role pair rp, which consequently adds a new rule to

the set of policies of EGRBAC. To qualify the requesting user, the assignment function finds the

including AT of given (rp, dr) set as well as the AR which is in charge for that specific task. The

model checks if the requesting administrator user has the AR which controls the retrieved AT and

add the (rp, dr) to the set of RPDRA provided that the rule has not been previously created.

Similarly, function REVOKERPDR(auser ∈ AUser, ar ∈ AR, rp ∈ RP, dr ∈ DR) would

authorize an administrator user auser with ar role to revoke a device role from a role pair by check-

ing similar preconditions as ASSIGNRPDR, unless in case of revocation, the intended (rp, dr)

should has been previously assigned by a legitimate administrator. As a result, the (rp, dr) pair

would be deleted from the set of RPDRA of EGRBAC.

4.1.3 Use Case Definition

In this section we will discuss a case study of smart home in two parts of operational and admin-

istrative cases. Proposed operational use case is an extension to what has been presented in [24].

Then the corresponding administrative use case would be discussed.

86

Operational Use Case

Presented use case aims to make a representation of a smart home environment in which users’

accesses are granted to parts of functionalities of given devices, a.k.a. device roles. Parents want

children to have access only to the kids_friendly_content on entertainment devices (TV, DVD, and

PlayStation). It should not be possible for kids to access to some functionalities of devices, which

should be specifically controlled by an adult, for example turn the oven on/off, controlling the

thermostat or garage door functionalities and so on.

Furthermore, we want babysitter to access the required adult-controlled functionalities, such

as turning the oven/thermostat on/off and lock/unlock the front door. However, we do not want

to grant an unnecessary access to babysitter, e.g. modifying the thermostat schedule. The most

permissive users would be the parents, to whom all functionalities of smart home are available.

The operational use case can be configured as illustrated in Table 4.2. There are five users

Alex, Bob, Susan, James, Julia who are correspondingly assigned to roles kid,

parent, babysitter, guest and parent. The set of devices include TV, DVD,

PlayStation, DoorLock, Oven, SurveillanceCamera, BurglarAlarm,

GarageDoor, Thermostat each of which has been associated with a set of operations

defined by the manufacturer.

We defined a set of permissions including 9 different permission sets. We designed the set

of permissions based on available operations for each device, as well as the desired access con-

trol regulations we previously mentioned. For example, we come up with two different permis-

sions P8 and P9 for thermostat. This design aims for implementing the least privilege principle,

as in next steps we can assign these permission sets to different device roles, e.g., assign P8 to

Adult_Controlled device role. Then, we assign babysitter to this device role, it is possible

to turn the thermostat on/off, but excessive access to thermostat’s schedule would not be provided.

Same consideration has been taken in designing separate permission sets of P1 and P2 for enter-

tainment devices, so it would be possible to define a device role, Kids_Friendly_Content,

which would provide kids with least required permissions necessary for their access. Four Device

87

Table 4.2: Operational Use Case

U = {Alex, Bob, Susan, James, Julia}
R = {kid, parent, babySitter, guest}
UA = {(Alex,kid), (Bob,parent), (Susan,babySitter), (James,guest), (Julia,parent)}
D = {TV, DVD, PlayStation, DoorLock, Oven, SurveillanceCamera, BurglarAlarm, GarageDoor, Ther-
mostat}
OP = {On, Off, PG, R, Lock, Unlock, Activate, Deactivate, OnOven, OffOven, StartRecording, StopRe-
cording, OpenGarageDoor, CloseGarageDoor, OnThermostat, OffThermostat, ScheduleThermostat}
P1 = {TV,DV D,P layStation} × {On,Off, PG,R}
P2 = {TV,DV D,P layStation} × {On,Off, PG}
P3 = {Oven} × {On_Oven,Off_Oven}
P4 = {FrontDoor} × {Lock, Unlock}
P5 = {SurveillanceCamera} × {StartRecording, StopRecording}
P6 = {BurglarAlarm} × {Activate,Deactivate}
P7 = {GarageDoor} × {OpenGarageDoor, Close_GarageDoor}
P8 = {Thermostat} × {On_Thermostat,Off_Thermostat,
Schedule_Thermostat}
P9 = {Thermostat} × {On_Thermostat,Off_Thermostat}
P10 = {OutdoorCamera} × {OnOutdoorCamera, OffOutdoorCamera}
P =

⋃
i=1..10 Pi

DR = {Entertainment_Devices, Adult_Controlled, Owner_Controlled, Kids_Friendly_Content }
PDRA = {P1 ×Entertainment_Devices} ∪ {P2 ×Kids_Friendly_Content} ∪ {{P3 ∪P4 ∪P9}×
Adult_Controlled} ∪ {{P5 ∪ P6 ∪ P7 ∪ P8} ×Owner_Controlled}
EC = {weekends, evenings, vacation, TRUE}
ER = {Entertainment_Time, Any_Time, Not_At_Home}
EA = {({weekends, evenings},Entertainment_Time), ({vacation},Not_At_Home),
({TRUE},Any_Time)}
RP = {(kid,{Entertainment_Time}),(parent,{Any_Time}),
(babySitter,{Any_Time}),(guest,{Any_Time}), (parent,{Not_At_Home})}
RPDRA = {((parent,{Any_Time}),Adult_Controlled),
((parent,{Any_Time}),Owner_Controlled),
((parent,{Any_Time}),Entertainment_Devices),
((kid,{Entertainment_Time}),Kids_Friendly_Content),
((babysitter,{Any_Time}),Adult_Controlled),
((guest,{Any_Time}),Entertainment_Devices)}

88

Figure 4.2: Administrative Units

Roles have been introduced and different permission sets have been assigned to them using PDRA.

A set of Environment Conditions, EC, has been assigned to different Environment Roles, ER,

which would be later coupled by Roles to create Role Pairs, RP. Coupling device roles with

role pairs through RPDRA completes the set of access rules in the system. As an instance, the

((parent,Any_Time),Adult_Controlled) pair communicates that parent can access to

Adult_Controlled device role, which includes access to turn the oven and thermostat on/off

and lock/unlock the front door, at any time.

Administrative Use Case

Table 4.3 depicts the administrative use case based on our proposed model and corresponds to

the operational use case discussed in previous section. Administrator users are a subset of reg-

ular users in the operational use case, and include Bob and Julia. As illustrated in Table 4.3,

each of administrator users has been assigned to two different administrative roles. Bob has been

assigned to Home_Owner and Entertainment_Manager and Julia has been assigned to

Home_Owner and Adult_Manager. Note that the Home_Owner administrative role has both

89

Table 4.3: Administrative Use Case

AUser = {Bob, Julia}
AR = {Entertainment_ Manager, Home_Owner, Adult_Manager}
AUA = {(Bob, Home_Owner), (Julia, Home_Owner), (Julia, Adult_Manager), (Bob, Entertainment_
Manager)}
AU = {Entertainment_Management, Ownership_Control, Adult_Management}
ProhibitedAssignment = {((kid,{Entertainment_Time}), Entertainment_Devices)}
AT = {at1, at2, at3}
at1 = {(parent, {Any_Time}), (babysitter, {Any_Time})} ×
{Entertainment_Devices,Kids_Friendly_Content}\ {ProhibitedAssignment}
at2 = {(parent, {Any_Time}), (babysitter, {Any_Time})} ×
{Adult_Controlled}\{ProhibitedAssignment}
at3 = {(parent, {Any_Time})}×
{Owner_Controlled} \{ProhibitedAssignment}
RolePair(at1) = {(parent, {Any_Time}), (guest, {AnyT ime}),
(kid,{Entertainment_Time})}
DeviceRole(at2) = {Adult_Controlled}
InclusiveTask((kid,{Entertainment_Time}), Kids_Friendly_Content) = at1
ARATA = {(Entertainment_Manager,at_1),(Adult_Manager,at_2),
(Home_Owner,at_3)}
ARat1 = {Entertainment_Manager}
ARat2 = {Adult_Manager}
ARat3 = {Home_Owner}
assignRPDR(Bob, Entertainment_Manager,
({(kid,{Entertainment_Time}), Kids_Friendly_Content})) =⇒ RPDRA =
RPDRA ∪ {((kid,{Entertainment_Time}), Kids_Friendly_Content)}
revokeRPDR(Bob, Entertainment_Manager,
({(kid,{Entertainment_Time}), Kids_Friendly_Content})) =⇒ RPDRA =
RPDRA \ {((kid,{Entertainment_Time}), Kids_Friendly_Content)} =⇒ RPDRA = ∅
assignPDR(Julia, Home_Owner, P10, Owner_Controlled)=⇒ PDRA = PDRA ∪
{(P10, Owner_Controlled)}revokePDR(Julia,Home_Owner, P3, Adult_Controlled)=⇒ PDRA
= PDRA \ {(P3, Adult_Controlled)}

90

Bob and Julia as administrator, which addresses the single point of failure associated with cen-

tralized administration.

There are three Administrative Units (AU) defined in our smart home use case includ-

ing Entertainment_Management, Ownership_Control and Adult_Management.

There is one AR uniquely associated with each AU, so an admin unit cannot have more than one

AR in charge of it, but more than one administrator user could be assigned to that AR. There is

one Administrative Task (AT) in each AU, which includes a set of DR and a set of RP. AU can

grant any subset of RP ×DR using the ASSIGNRPDR authorization functions or revoke by using

REVOKERPDR.

There are some samples of administrative relations depicted in Table 4.3. For instance, ARat1

indicates the AR which is in charge of at1. Authorization functions have also been shown, for

example ASSIGNRPDR = (Bob, Entertainment_Manager,

({(kid,{Entertainment_Time}), Kids_Friendly_Content})), would first find

the inclusive task of the given (rp,dr) which is at_1. It then checks if En-

tertainment Manager is the AR assigned to ({(kid,{Entertainment_Time}),

Kids_Friendly_Content}), which is true in this use case. Lastly, if the requested access

pair is not previously defined, it would add it to the access rules in RPDRA of the operational model.

It is noteworthy to see the ((kid,{Entertainment_Time}),

Entertainment_Devices) has been defined as ProhibitedAssignment, so the

authorization function (ASSIGNRPDR) would not let any administrator to grant access to

Entertainment_Devices to the kids at their entertainment time. The illustration of

discussed usecase has been provided in Figure 4.2.

4.1.4 Administrative Model Extension

In this section, we extend our model to support PDRA assignments as well. So, when a new device

added to the smart home environment, its permissions could be assigned to an existing/newly cre-

ated device role/s by adding PDRA assignments. Also, an administrator might decide to rearrange

91

Figure 4.3: Extended Administrative Model for Managing both RPDRA and PDRA

permissions associated to a device role, which is accomplished through making changes to PDRA.

Succinctly, we extended previous administrative model by defining different administrative sub-

units, each of which includes an AR and an administrative sub-task. Consequent changes to the

model formalization has been proposed, that we will review in this section. Proposed extended

administrative model is illustrated in Figure 4.3.

Formal Definition of Extended Model

The formal definition of previous administrative model has been extended as depicted in Table 4.4.

We adopt the same administrative functional categories as our first model. The same concept of

Administrative Unit (AU) exists in the extended model. Here, AU would encompass two sub-

units (SubAU), one for governing PDRA and another for managing RPDRA. Similarly, the set

of Administrative Tasks (AT) includes two Administrative SubTask (SubAT), naming P-AT which

92

includes the subAT which corresponds to PDRA and another subAT named R-AT which contains

ATs correspond to RPDRA.

R-At is the same as AT in previous version of our model and contains two sets, a subset of

role pairs (RP) and a subset of device roles (DR). P-AT includes two sets, one is the subset of

permissions (P) and another is a subset of device roles (DR). There is a unique set of Administrative

Roles (AR). Each Sub-AU includes a SubAT and an AR which has been uniquely assigned to

manage that SubAT. This Assignment would be a one-to-one relationship, however it is possible

for one AR to be administrator for different SubATs.

Corresponding administrative authorizations have been added to the model formalism, as AR-

RATA is a one to one relationship which uniquely assigns an administrative role (AR) to a R-AT

administrative subtask. Likewise, ARPATA assigns a unique administrative role (AR) to a P-AT

administrative subtask via a one to one relation.

Authorization functions which control over manipulating RPDRA remain the same. We also

added analogous authorization functions for PDRA management, which have been shown at the

bottom of Table 4.4.

Function ASSIGNPDR(auser ∈ AUser, ar ∈ AR, p ∈ P, dr ∈ DR) enables a user auser

with ar role to add the (p, dr) to the set of PDRA of the operational model. As an illustra-

tion, suppose a smart outdoor camera has been added to smart home, with the permissions set

to be {OutdoorCamera} × {On,Off }. So, an authorized administrator user, any of homeown-

ers, should be able to assign this new permission to previously/newly defined device roles. In this

example, the new permission could be assigned to Owner_Controlled device role in the system.

Required changes to represent this usecase have been color-coded in Tables 4.2 and 4.3.

Equivalently, required changes in Function REVOKEPDR(auser ∈ AUser, ar ∈ AR, p ∈

P, dr ∈ DR) enables the user auser with ar role to remove the (p, dr) from the set of PDRA of op-

erational model. So, any role pair which has been coupled with device role dr would consequently

lose the permission p. For instance, as depicted in Table 4.2, Julia as the an administrative user with

the administrative role Home_Owner can remove the permission P3 = {OvenOn, OvenOff} from

93

Table 4.4: Extended Administrative Model Formalization

Core Components
−AUser ⊂ U is a set of administrator users.
−AR is a set of administrative roles, authorized to manage a specified subset of RPDRA.
−AUA ⊂ AUser ×AR is a many to many administrator user to administrative role assignment.
−AU = ∪∀iSubAUi ,is a set of administrative sub-units (SubAU).
−AT is a set of administrative sub-tasks (SubAT), i.e. AT = P -AT ∪ R-AT .
−R-AT ⊆ (2RP × 2DR)\ProhibitedAssignment is a set of administrative tasks related to RPDRA
assignment, which contains all pairs of cross product of a subset of RP , and a a subset of DR, but a
set of ProhibitedAssignments has to be excluded.
−P -AT ⊆ (2P × 2DR) is a set of administrative tasks related to PDRA assignment, which defines
permission assignments to device roles.
−SubAU ⊂ AR× {R-AT,P -AT} is a administrative sub-unit.
Administrative Constraint
−ProhibitedAssignment is a set of prohibited (rp, dr) pairs each of which is a member of pos-
sible pairs of assignment but specified to be forbidden to be added to RPDRA by design,
(ProhibitedAssignment ⊂ RP ×DR).
Administrative Authorization
−ARRATA ⊆ AR ×R-AT , is a one to one AR to R-AT assignment determining the scope of adminis-
trative control for a given ar on RPDRA.
−ARPATA ⊆ AR × P -AT , is a one to one AR to P-AT assignment determining the scope of adminis-
trative control for a given ar on PDRA.
−ARAUA ⊆ AR × AU is a one to one AR to AU assignment, determines which au is under control of
a given ar.
Derived Administrative Relations
−ARat∈SubAT ⊂ SubAT ∈ AT×AR : ARat = ar ∈ AR : at ∈ ARRATA(ar) ∨ at ∈ ARPATA(ar):
many to one administrative subtask to administrative role function which determines which ar can
manage this at.
−RolePairat∈AT ⊆ 2RP determines which role pairs are included in a given administrative task.
−DeviceRoleat∈AT ⊆ 2DR discovers the device roles which are included in a given administrative task.
−InclusiveTask((rpp, dr)) ⊆ ({(rpp ∈ RP) ∨ (rpp ∈ P)}, dr ∈ DR)× {AT ∪ FALSE} determines
the association of a (st , dr) to an administrative task (either R-AT or P-AT) if this pair is currently
defined as a member of that administrative task, if no inclusive administrative task found, it
returns FALSE.
Check Access Predicate
−ASSIGNRPDR(auser ∈ AUser, ar ∈ AR, rp ∈ RP, dr ∈ DR) ≡ (((auser, ar) ∈ AUA) ∧ (r-at =
InclusiveTask(rp,dr) ∧ ar = ARr−at) ∧ ((rp, dr) /∈ RPDRA)) ⇒ RPDRA′ = RPDRA ∪ (rp, dr)
−REVOKERPDR(auser ∈ AUser, ar ∈ AR, rp ∈ RP, dr ∈ DR) ≡ (((auser, ar) ∈ AUA)∧(r-at =
InclusiveTask(rp,dr) ∧ ar = ARr−at) ∧ ((rp, dr) ∈ RPDRA)) ⇒ RPDRA′ = RPDRA\(rp, dr)
−ASSIGNPDR(auser ∈ AUser, ar ∈ AR, p ∈ P, dr ∈ DR) ≡ (((auser, ar) ∈ AUA) ∧ (p-at =
InclusiveTask(p,dr) ∧ ar = ARp−at) ∧ ((p, dr) /∈ PDRA)) ⇒ PDRA′ = PDRA ∪ (p, dr)
−REVOKERPDR(auser ∈ AUser, ar ∈ AR, p ∈ P, dr ∈ DR) ≡ (((auser, ar) ∈ AUA) ∧ (p-at =
InclusiveTask(p,dr) ∧ ar = ARp−at) ∧ ((p, dr) ∈ PDRA)) ⇒ PDRA′ = PDRA\(p, dr)

94

the set of permissions of Adult_Controlled device role. So, any user with that role, e.g., babysitter,

would no longer has the permission to turn the oven on/off. She might want to add that permission

later to another device role, e.g. Owner_Controlled. This example has been added in red to the

bottom of Table 4.3.

4.2 Blockchain-Based Administration of Access in Smart Home IoT

There are numerous access control models proposed for IoT environments, however, many of

the proposals have remained at the conceptual level. Even so, different deployment mechanisms

in some frameworks relying on existing technologies, including cloud [39, 66], Open Authoriza-

tion (OAuth) [177] and blockchain [123, 141, 146, 147, 155], among them blockchain has been

widely used in recognition of its transparency which benefits auditability. Moreover, blockchain’s

distributed nature removes the need to trust the third parties, which is of advantage to privacy

protection. Nonetheless, using blockchain for access control is still controversial [98]. The perfor-

mance of blockchain-based systems is still not competitive with current centralized access control

systems. In time-sensitive applications using blockchain for access control would negatively af-

fect users’ experience [126, 168]. On the other hand, communication with blockchain demands

higher amounts of computation power and space that is available to resource/energy constrained

IoT devices.

In this section, we propose using blockchain for administration of access, unlike most of pre-

viously presented approaches which have been applied in operational environments. We recognize

blockchain could bring its intrinsic advantages of distribution, transparency, and scalability to the

administration of access while it is not yet practical to be used for operational access control. Us-

ing blockchain for enforcing the administrative model would equip the access management with

improved security and posteriori auditing [174] as discussed in Section 4.2.1, as well as the po-

tential of generalization of the proposed approach to environments with similar dynamics relying

on scalable nature of the blockchain. Since administrative access control tasks are less frequent,

blockchain’s monetary costs and time burdens are bearable, for instance it is reasonable to wait for

95

seconds for an administrative change to take effect.

We discuss our enforcement architecture based on blockchain for access administration in the

smart home IoT, while Greengrass [4] has been utilized to mediate device-cloud connections. It

also handles required access control tasks in the local environment. Greengrass in the correspond-

ing operational model serves as the smart hub and policy engine. So, the blockchain burdens of

time, computational power and storage would not be imposed at the operational level. There is no

need to store the ledger information or even communication wallets on resource-constrained IoT

devices, as we do not use blockchain at the operational level for access control.

To build our enforcement architecture, we adopt the administrative model presented in previous

section which is an RBAC model for administration of access in the smart home IoT environment.

This model provides decentralization, scalability, and generalization via defining administrative

units to scope the administrative tasks entitled to each administrator user, which also benefits

users’ privacy. EGRBAC (Extended Generalized RBAC) [24] is picked in [186] as the under-

lying operational model which is a dynamic, fine-grained, and context-aware operational model.

Our proposed architecture provides interoperability of administrative and operational levels of ac-

cess. Besides proposing an enforcement architecture, different interactions to it are presented in a

sequence diagram and it is also backed up by a proof-of-concept implementation.

4.2.1 Problem Statement and Motivation

Security of any management system is of utmost importance, so would be administration of access

in a smart home. The proposed architecture in this paper is intended for administration of access for

user to device interactions. It relies on blockchain’s intrinsic characteristics of being immutable,

tamper resistant and transparent for security provision.

Threat Model. In our proposed architecture IoT devices are not part of the blockchain network

for obvious performance benefits elaborated in the next section (See 4.2.2). Thus, IoT devices

would rely on access authorization rules made by access administrators. A malicious insider or

an attacker could target the smart home’s security by spoofing (impersonating as access manager),

96

tampering (modifying the access control policy towards his/her desired intent), privilege escalation

(trying to elevate the available privileges or repudiation (denial of performing an action).

Motivating Example. A simple example of an insider security threat could be a dishonest

babysitter trying to tamper with access control rules so that s/he would have access to the house at

the times s/he is not meant to. As another example an attacker can fake an administrator account

enforcing an IoT device to maliciously deny the access to a subject even though the policy would

have granted it.

How Blockchain Helps with Security. In our proposed architecture administrator account and

access management tasks cannot be forged or manipulated, as we utilize a wallet private key to en-

crypt an administrator account and definition/configuration of access, so the administrator account

cannot be faked. The access administration policy is defined by programming a smart contract and

is recorded into the ledger via a consensus process which is protected from tampering relying on

the irreversible nature of blockchain. Therefore, it is impossible to change the authorization rules

in favor of a malicious insider or an attacker, as stated in the above example. Moreover, access

administrative requests are submitted via transactions which helps to verify proper implementation

and integrity of access control rules. In our system, the operational access control policy is updated

accordingly with transaction logs of the blockchain that ensures authorization rules’ authenticity.

Furthermore, a blockchain based solution equips the system with transparency and auditability.

So, if any unduly granting/denial of access happens, intrinsically immutable logs of transactions

on blockchain provides a way for posteriori auditing and verifying the related policy on the chain.

In case of maliciously denying access, using blockchain would equip the system with means to

verify which policy was enforced, and if the policy is disobeyed by an IoT device, it reveals the

device being maliciously controlled.

However, we are assuming users’ communications with the edge services are secured over the

home local network. Routing attacks which could stop Greengrass from receiving updates from

the cloud, and attacks against web3 API compromising credentials are considered out-of-scope of

97

Figure 4.4: Whether a Blockchain is the Appropriate Technical Solution for Your Problem [205]

this paper. Security considerations are discussed in further details in Section 4.3.

4.2.2 Blockchain For Access Control

In this section we discuss the usage of blockchain for administration of access.

Why Not to Use Blockchain at Operational Level

As one of the application domains of blockchain, access control in the IoT domain gained a lot of

attention in the literature. There are a handful of publications which recognize blockchain-based

access control would strengthen overall IoT security [64,113,165], while others assert blockchains

are not yet ready for mass usage in any domain, for which their designs and code bases have to be

more mature [61]. Many of the previously proposed researches use blockchain at the operational

level for access control, as briefly discussed in Section 2.2.2. Nonetheless, there are some inherent

characteristics of blockchain which make it unsuitable for that purpose.

Elaborating on different approaches to use blockchain for operational access control, consider

the following options: In the case of device democracy, which has been advocated by IBM as

the future of IoT [3], each IoT device takes responsibility for its own access control. However,

not every IoT device could be burdened with required storage and computational power, as many

IoT devices are currently energy- and resource-constrained (e.g., light sensors or wearable IoT

devices).

Other approaches for blockchain-based access control, use the blockchain as the storage for

access control policies [145, 146]. So, every time a policy appended to the set of access control

policies or retrieved from the blockchain a transaction should be communicated and confirmed.

The required duration of confirming a transaction is inappropriate for operational access control

purposes in which a user cannot wait ten minutes for a transaction to be completed [146]. More-

98

over, some actions might be latency-sensitive, for example when a wearable health IoT device

should make an emergency call to 911. As one of the most popular blockchains utilized in ac-

cess control, Ethereum has the average block time (the time it takes for a block to be added to the

blockchain) of 13 seconds [9], which is still significant for a home user to get access to the door

lock, for example. In recent research [195], authors implemented their operational access control

approach based on an alliance chain built on Ethereum, yet the access control time is in the order

of seconds and varies based on number of access requests.

Another problem of using blockchain for operational access control is financial, as every trans-

action needs a fee to be paid in cryptocurrency to be completed. Considering how recurrent the

access transactions would be even in a small IoT environment like a smart home, the monetary

burden could be prohibitive. The fluctuating price of cryptocurrency aggravates this problem.

Blockchain for Administration of Access

Authors in [205] presented a flowchart which shows their standing about the necessity of using

blockchain for different use cases. We followed the proposed chart to justify using blockchain in

this paper for administration of access in the smart home IoT environment which has been depicted

in Figure 4.4, and indicates our position with utilization of blockchain for administration of access.

Blockchain’s features of distributed nature, scalability and transparency make it an appealing

infrastructure for access control implementation. Moreover, it could equip the system with essen-

tial security benefits, which otherwise cannot be provided using common centralized approaches as

explained in Section 4.2.1. In this paper we suggest utilizing blockchain for administrative access

control, not at the operational level, for following reasons:

• Administrative access control tasks are infrequent compared to required operational access

authorizations [57], so the burden of required processing time for blockchain adoption is few

and far between and worth its benefits.

• As blockchain is an immutable ledger, it provides accountability for administrative tasks.

So, access control would be coupled with auditing as a posteriori analysis [174], providing

99

a more complete security solution.

• As the adopted administrative model in this paper is decentralized in nature, it could take

benefits of blockchain decentralization to be scaled. So, proposed enforcement architecture

could be extended to environments with similar dynamics, e.g., smart buildings. Moreover,

relying on the distributed nature of blockchain, we can get around privacy concerns which

arise when using third parties in other infrastructure, e.g., cloud.

• The need for storing blockchain information or being involved in heavy computations would

be eliminated for resource constrained IoT devices, as those would not be engaged in admin-

istration of access.

A distinct feature of our research is to follow the PEI model (Policy, Enforcement Architec-

ture and Implementation) as our reference model [169], which would be further described in Sec-

tion 4.2.4. Briefly saying, we rely on an RBAC as the policy model (P in PEI) designed for admin-

istration of smart home environments [186]. Almost all the previous works, nevertheless, lack the

support of a formal model and rely on informally assumed policy objectives to build their access

control frameworks. We then propose our enforcement architecture (E in PEI), implemented (I in

PEI) on the Ropsten testnet of Ethereum. Our research is one of the very few works [141] in which

administration of access has been considered.

4.2.3 PEI: Underlying Administrative Policy

Before discussing our blockchain-based architecture for administration, we briefly describe the

RBAC administrative model proposed in [186] which is built upon EGRBAC [24] as underly-

ing operational access control model. There have been multiple studies conducted recently to

understand the needs and preferences of smart home users. These studies reported smart home

users expressed the need for a fine-grained access control system, and RBAC was reportedly the

most preferred approach by users for limiting the access to smart home resources [93, 213, 214].

Adopting EGRBAC as the operational model provides a fine-grained RBAC access control which

100

provides on permission level, instead of device level access provision; so, it would be possible to

grant partial access to a device by defining the device role (DR) instead of the whole device con-

trol. For instance, a babysitter can turn on/off the AC but is not permitted to change its schedule.

EGRBAC captures the environmental context by defining the environment roles (ER) which later

would be paired by standard user roles to create the role pairs (RP). RP and DR would later be

coupled together to establish the access authorization rules.

EGRBAC is chosen not as a de-facto operational model, but because it has the desired proper-

ties for a smart home IoT operational access control on one hand and its enforcement architecture

relies on AWS Greengrass [4] which can be best integrated with our enforcement of corresponding

administrative model [186]. However, the proposed administrative model in [186] and hence the

proposed enforcement architecture in this paper could be utilized for any underlying operational

model, regardless of if it being RBAC or used any other access control paradigm.

Administrative Model

Access administration in a smart home environment is a particular access management problem

as home users lack the expertise of a typical system administrator and are unlikely to spend much

time learning complex interfaces to assign/revoke access rights or auditing the access logs. The

other complication stems in multiple ownership for smart devices in the home which demands

for decentralized access management. Moreover, to avoid a single point of failure it is required

to have multiple administrators in the house. For example, if one of the home administrators is

on a business trip and there is a problem to the house power system, there should be another

administrator who can grant access to the electrician to fix the issues [109].

We adopt a role-based administrative model [186] which corresponds to EGRBAC operational

model and governs the authorization functionalities in a smart home in a decentralized way. The

decentralization is provided through defining the administrative units (AU), each of which is con-

trolled by an administrative role (AR) which could be taken by multiple administrator users. Each

administrative unit controls a predefined set of administrative tasks (AT) which represents the scope

101

Figure 4.5: Blockchain-Based Enforcement Architecture for Administration of Access in IoT
Smart Home Environment

of administration. Adopted administrative model classifies possible changes in a smart home IoT

environment to be add/remove a user, add/remove a device and modifying the current operational

assignments, among which adding a new user is done infrequently and could be done in a cen-

tralized way; so, is out of the scope. Therefore, the administrative tasks have been defined as

management of the assignment relations in the underlying operational model. Although the model

is defined in the smart home context, it could be applied to environments with similar dynamics by

defining extra administrative units.

4.2.4 PEI: Enforcement Architecture

Blockchain-Based Enforcement Architecture

In this chapter, we consider the access control framework to be based on a three-layer PEI as coined

in [169]. PEI stands for Policy (Policy Models), Enforcement and Implementation. Policy layer

102

is specified based on any access control paradigm in an ideal context which assumes all relevant

information for making access decisions are instantly and securely available. The Enforcement

layer manifests the policy model and provides an enforcement architecture which approximates a

correspondent of the policy. Implementation layer deals with detailed implementation technologies

and mechanisms.

In this paper, the policy model is adopted from [186] which is a RBAC administrative model.

The enforcement architecture in this paper is compatible with the Access Control Oriented (ACO)

architecture for cloud-enabled AWS IoT [23, 39], which is enclosed in the gray square with dot-

ted border in Figure 5.5. Our authorization solution is deployed utilizing the AWS Greengrass

SDK [4], an edge run-time and cloud service which provides local messaging, processing and data

management services. We designed our administrative enforcement so as to be interoperable with

its underlying operational model [24] which has been shown at the right side of Figure 5.5. As

depicted, the POLICY.JSON file is shared between administrative and operational models; so we

chose to protect its integrity with locks against possible concurrent accesses.

Overall, we propose a system which leverages the tight coupling between our authorization de-

sign and a publish/subscribe syndication which is specifically useful in the context of smart home

IoT environment. Followings are the main components of the Greengrass part of the architec-

ture which runs locally and serves as the smart hub and policy engine in our access management

framework:

• Virtual objects (shadows) serve as intermediaries between applications and physical devices

and keep the latest known state of the corresponding device. So, the device’s state would be

available to applications and services even if the device itself is not connected to AWS.

• AWS utilizes a policy-based authorization mechanism. The policies are contained in a JSON

file, which includes access control rules for utilizing a resource.

• Lambda functions (λ) are event-driven computational units, sitting and waiting for mes-

sages from the topics to which they have been subscribed. As a message is received, the

103

lambda function wakes, does the computation reaching out to POLICY.JSON file, and pub-

lishes the results to subscribed topics. We have adopted the operational lambda from [24]

which executes the operational level policies for user-to-device access requests. We define

an administrative lambda, which updates the POLICY.JSON file. This file is spelled out based

on administrative requests submitted by administrator users, which then would be evaluated

based on the administrative policy encoded into smart contracts on the blockchain. Since

the policy file is shared between both operational and administrative lambda functions, its

integrity should be protected during concurrent accesses by using locks or other concurrency

control mechanisms.

• Communications are done through MQTT protocol, which is a lightweight machine-to-

machine publish/subscribe messaging protocol, designed for constrained devices. Local

MQTT publish/subscribe messaging defines the subscriptions between publishers and sub-

scribers.

As depicted on the left side of the Figure 5.5, we utilize Ethereum blockchain. Ethereum

is a decentralized, public, permissonless, and the most actively used blockchain based on

Bloomberg [10]. It is the maturest blockchain in terms of code base, user base and developer

community. Ethereum is capable of being configured as both a permission-less and a permissioned

blockchain network, as well as the community-based development of the platform. In other words,

saying Ethereum is a permissionless blockchain means there is no authority on a network level.

The logic deployed on the chain, in the form of a smart contract, does define permissions. In a

smart contract, we can define an action that may only be performed by the contract’s owner and

not by the others.

The whole architecture represented in Figure 5.5 depicts a scenario of an administrator user at

home, in which user can communicate with the Greengrass using the local home network on his/her

smartphone. If the user is out of home, however, the administrator user’s smartphone would have

to communicate with its shadow on the AWS cloud and update it by sending a HTTP request to

the AWS IoT Core. Then, the cloud forwards user’s request messages to the local Greengrass by

104

Figure 4.6: Reference Example

publishing to the user’s private topic of USER/SHADOW/UPDATE, which afterwards followed by

the same steps as illustrated in Figure 5.5. At the end, the user’s phone shadow on the AWS cloud

would update the user’s phone with the status of the submitted request.

4.2.5 Sequence Diagram

For an administrative access request to be handled, a workflow as depicted in the reference scenario

in Figure 4.7 is followed. An administrative user who wants to define/change the assignments of

the operational model first submits the request through his/her smartphone. Consider the follow-

ing example scenario depicted in Figure 4.6 in which Bob is the parent and the administrator of

the smart home. There is an administrative unit (AU) called UTILITY_MANAGEMENT with the

UTILITY_MANAGER as its administrative role (AR) which has been assigned to Bob. So, Bob

is the administrator user who can decide about accesses of different Role Pair (RP) and Device

Roles (DR) which are included in the corresponding administrative task (AT). The Device Role,

UTILITY_DEVICES, includes the permissions of TURNON, TURNOFF, RESET, SCHEDULE for

devices AC,FUSEBOX,WATERMETER. If Bob, as the UTILITY_ADMINISTRATOR, wants to grant

the available permissions to a technician for a period of time, he should define the assignment

the role pair (RP) (TECHNICIAN,REPAIR_TIME) to the UTILITY_MANAGEMENT device role. It is

noteworthy that assigning kids at any time to the UTILITY_DEVICES has been defined as prohibited

(refer to Figure 4.6).

105

Figure 4.7: Time-Based Flow of Administration of Access Based On Proposed Architecture

For the above-mentioned example to go through, Bob must determine the desired RP and DR,

sign the administrative assignment with his private key (which is securely stored on his personal

smartphone) and then submit this administrative request as a transaction to the blockchain. Com-

munication with the blockchain is conducted through a web3 API via HTTP requests. We used

Infura [13] as our Web3 API in this paper. After publishing the transaction to the blockchain and

getting back the transaction hash, this hash would be returned to the user’s phone and also imme-

diately published to the USER/SHADOW/UPDATE. As λ function has been subscribed to the same

topic, it would also be notified with the transaction hash, which would be later used to retrieve the

transaction log after being mined by λ. Administrative λ would investigate the transaction log in

order to find out if the request has been approved. In either scenario of approve/deny (correspond-

ingly permit/deny), the administrative λ would publish the results to the USER/STATUS/UPDATE

topic, so the user would know the results. If permitted, the new assignment would be written

to the access control logic, which is the POLICY.JSON file. When the technician wants to access

the UTILITY_DEVICES, the operational λ would check the access control logic file and grant the

required permissions, if defined so.

106

Figure 4.8: Statistical Summary of Gas Used

Figure 4.9: Admin Timer Figure 4.10: Full Timer

4.2.6 PEI: Implementation

Most of the proposed blockchain-based access control frameworks, which we briefly discussed

in Section 4.2.2, have left their proposals at the conceptual level [89, 155] or evaluate them on

either a locally built blockchain [135, 207, 217] or a testnet which is not using the same protocol

as the Ethereum mainnet [87], so none of which provides a reliable and pragmatic assessment

of practicality. In this paper, we validated our proposal of using blockchain for administrative

access control enforcement by a proof-concept implementation. Further details are provided in the

following sections.

107

Ethereum Blockchain

Ethereum could be viewed as a state machine in which a transaction would represent a valid tran-

sition between states [8]. A transaction is a single cryptographically signed instruction issued by

an entity which is tied to an account. There are two types of Ethereum accounts, externally owned

accounts (EOA) which belong to an external user and controlled by a private key, and contract

accounts which contain and are controlled by the code. Transactions collected into blocks which

are chained together via cryptographic hashes to create the blockchain. Each block should be dis-

tributed and agreed upon by every node in the network before being added to the chain, using a

consensus algorithm. Current version of Ethereum uses proof-of-work, a.k.a PoW, as its consensus

algorithm.

It is not a preferable choice to develop and test the smart contracts on the primary public

blockchain of Ethereum, a.k.a mainnet, for two reasons. First, because of the immutable nature of

blockchain, changing the smart contract code would be a challenging issue as rewriting at transac-

tion level within the blocks is still in its infancy [59]. Second, Ethereum has its own cryptocurrency

called ether and an internal currency called gas to pay the fee of transaction on Ethereum which is

proportional to the amount of required computational effort. As any transaction with the mainnet

needs gas to be run, buying the real ether (ETH) to provide the gas is prohibitive for testing pur-

poses. Therefore, multiple test networks, a.k.a testnets, have been introduced to test smart contracts

before deploying them on the mainnet.

We deployed a smart contract on the Ropsten testnet which is the official Ethereum testnet [11]

that uses the same consensus protocol, PoW, as the mainnet. Because many users test their ap-

plications on this test network before deployment on the real chain, we recognize it to be a better

simulation of a real-world scenario [126]. Therefore, we consider our results to be close enough to

the real-world scenario of using the main Ethereum network. Other testnets, such as Rinkeby, Ko-

van and Görli are using proof-of-authority, a.k.a PoA, which is more time and energy efficient, but

different from the mainnet consensus protocol. Therefore, we consider those testnets as nonviable

and unreliable to represent the mainnet.

108

Smart Contract

We implemented administrative access control policy in a single smart contract on the Ropsten

blockchain, in which administrative units are predefined and different administrative controls have

been coded as functions which would be triggered via transactions. Although the smart contract

code is not modifiable after being deployed, it is possible to add/remove data to its stack. So, the

administrator can define new tasks to be included in each administrative unit or remove a task from

the list of prohibited tasks.

We programmed our smart contract in Solidity and tested it on Remix IDE [15] which is the

official browser-based IDE for Ethereum. Administrative units and administrative tasks defined

as separate mapping data structures in Solidity. To interact with a smart contract, which has been

deployed on the Ropsten testnet blockchain, we used a WEB3 API facilitating interaction with the

blockchain. We used Infura [13] as the connection point for the web3 API, which hosts some nodes

of Ropsten and relays all transactions to the blockchain.

Experiment Setup

We simulated a use case provided in Figure 4.6 using AWS IoT Greengrass v1 which runs on a

dedicated virtual machine with one virtual CPU, 2 GB of RAM and 20 GB hard drive. The virtual

machine’s operating system is Ubuntu 20.4.2 LTS and it is connected to a 1 Gbps network. Our

AWS lambda code on the Greengrass is written in Python 3.8 and is running in a long-lived isolated

runtime environment with limited RAM of 256 MB. Lambda function receives the administrative

requests and connects to Infura API to check the transaction status and results, after they have

been run on Ropsten testnet. The results would later be reflected on the user’s phone via updating

its shadow on the Greengrass by lambda function. These results would also be written into the

POLICY.JSON file if the administrative request was submitted and approved by smart contract to

update the access rules. The POLICY.JSON file would be referred to govern operational accesses

in the smart home environment and is shared between operational and administrative Lambda

functions and protected by a lock for concurrency control.

109

Implementation Results

Table 4.5: Statistical Analysis Results

Gas Used (gwei) Admin Timer (ms) Full Timer (ms)
n=20 n=500 n=20 n=500 n=20 n=500

AVG 127254 127256 4.67 11.61 16234.85 12005.34
100% (Max Quantile) 127326 127341 24.75 62.51 96743.43 100602.62
99% 127326 127326 6.29 19.90 64345.05 56523.07
95% 127310 127310 5.22 18.34 47215.98 32847.43
90% 127298 127298 4.95 17.26 34990.34 23773.95
75% (Q3) 127283 127283 4.75 15.19 22015.52 14891.59
Median 127255 127255 4.60 11.20 11667.90 9035.50
25% (Q1) 127228 127228 4.38 7.62 6019.41 4845.63
10% 127197 127212 4.30 6.32 3171.00 2935.90
5% 127185 127185 4.25 6.07 2076.12 2294.55
1% 127185 127185 3.96 5.36 63.50 1097.91
0% (Min Quantile) 127185 127185 2.16 4.04 55.45 68.07

To evaluate the performance and practicality of our blockchain-based approach for adminis-

tration of access, we implemented a proof-of-concept under the settings discussed in the previous

section. That means each transaction has been sent to Infura and the raw transaction hash is being

sent back to the user’s phone and the Lambda function. Then, lambda waits for the transaction to

be mined and afterwards updates the policy file based on the successful events in the transaction

log. The results would also be sent to the user’s phone. Experiments are done for a normal dis-

tribution with a 99.9% confidence interval. To synchronize timing of the local computer and time

servers in case the administrator user wants to make policy changes when away from home, we

used Chrony [5].

To avoid duplicates, each time a new rule has been administratively requested to be added to

the POLICY.JSON file, we check the policy and add the new rule to the policy only if it has no

replica in the current policy. We ran our experiments in two settings with the policy sizes of n=20

and n=500. In the first setting, we start with an original policy of size 20 and add one policy

110

in each experiment but keep the maximum size of the policy to be 21. After each experimental

run, the original policy with 20 values is reinstated and any changes are dismissed. The second

scenario starts with a policy size of 20 but grows incrementally with each policy submission. Both

experiments were run for a total of 500 times, resulting in the first case a maximum of 21 policies,

and the second case, a policy grew from 20 to the final size of 520.

All the statistical analysis results are provided in Table 4.5. A visual representation of two

important metrics of time and cost are depicted in Figures 4.8, 4.9 and 4.10. Figure 4.8 shows the

required gas for transaction mining on the Ropsten network. The used gas is the actual amount of

gas which was used during execution. Gas prices are denoted in GWEI, which equals to 10−9 ETH.

We calculated the monetary cost of each transaction to be 28 cents, based on the Ether price as of

the time of writing this paper.

Based on the results depicted in Figure 4.9, the difference of average time required for adding

a new policy rule (administrative action) would be highly affected by the policy size, which is an

indicator of the lambda processing time. After a transaction has been successfully mined, Lambda

checks the logs to search out the succeeded transactions. Then, it makes appropriate changes to the

POLICY.JSON file and publishes the results to the USER/STATUS/UPDATE to inform the user about

his/her administrative request. We call this time Admin Timer which is in order of milliseconds.

The Full timer in Figure 4.10 shows a complete cycle of an administrator submitting a request,

to that request being mined, and the lambda function processing the results and updating as nec-

essary. The average total time for an administrative task using blockchain could be estimated as

12.012 seconds. Although this time is unsatisfactory for end users in an operational model, it

is quite acceptable for an administrative model, especially compared to the other administrative

methods which may take in order of minutes, hours or even days to take effect. On the other hand,

with Ethereum moving to Proof of Stake (PoS) as its consensus mechanism, the costs and timing

are expected to decrease dramatically [7].

111

4.3 Discussion: Model/Architecture Properties and Limitations

In this chapter, we proposed an RBAC administrative model based on EGRBAC operational model

in smart home IoT environments. We introduced the concept of administrative unit, which con-

sists of a unique administrative role and a set of administrative tasks. Each administrative task

corresponds to one of the ASSIGNMENTS in the operational model. The model has been extended

to enclose another assignment relations of the model by introducing administrative sub-units and

administrative sub-tasks. Therefor, the extended model would have appropriate parts for admin-

istrative tasks required to manage access changes due to adding a new device to smart home or

imposed by changes in assignments in which device role is involved. We assume the set of regular

user roles, administrative roles and device roles have been centrally managed in some way.

Proposed model’s properties and restrictions recognized to be as follows:

Decoupled Assignment and Revocation Proposed authorization functions in our models de-

couple assignment and revocation. Therefore, any administrator user can conduct authorized

grant/revoke assignments, provided that the function’s preconditions are satisfied. This means

there is no need that granting and revocation of a permission to be done by the same administrator.

Symmetric Assignment and Revocation Even though grant and revoke are decoupled as stated

above, our authorization functions enable an administrator user to revoke a permission, which

has been conferred previously by him/her, from a subject. Similarly the same administrator who

revoked a permission is able to re-grant it in the future, as long as the administrator user holds the

same administrative role.

Generalizability Although our model manages two of assignments in underlying operational

model, it could be easily generalized to govern other assignments by defining extra administrative

units, each of which would cover a new scope of administration defined as an administrative sub-

task.

112

Then, we presented an architectural enforcement of access administration for above-mentioned

administrative model. The administrative model that we chose as our underlying policy model as

per PEI framework [169], has its above-discussed characteristics and limitations which have been

carried to our proposed architecture and implementation. Our architecture is based on Ethereum

blockchain and hence is decentralized, auditable, and reliable. We backed up our proposed archi-

tecture with a proof-of-concept implementation. Our implementation results are reassuring that

although the use of blockchain for operational access control is not promising, an administrative

model could successfully utilize the benefits of blockchain. Additional characteristics of proposed

framework as well as some security considerations have been briefly discussed as follows.

Transparency and Auditability Using Ethereum as a public blockchain provides full trans-

parency of transactions as well as access to immutable history logs. Without blockchain, the con-

text of access control decisions would no longer be available; however, blockchain logs provide

the posterior auditability. Moreover, the smart contract remains publicly visible on the blockchain

even if it would be disabled in the future; in such a case the actual contract remains on the chain

but would be marked as not callable.

Privacy The distributed nature of the blockchain eliminates the concern of privacy leakage from

a single point of administration. Using blockchain preserves the privacy of the smart home as a

whole, because the smart contract is only accessible with users who have their private keys stored

on their own devices. Privacy of each user in the smart home withholds through decentralized

administration in the form of administrative units (AU); so that each user’s privacy zone could

be contained in a separate unit while that user has been the only user assigned to corresponding

administrative role.

Smart Contract Security Benefits of creating decentralized applications (dApp) using smart

contracts do not come without costs. As an account-centered model of transactions which is used

to identify and communicate with smart contracts on Ethereum, authentication and authorization

113

failures may impose security risks to the system. Ethereum itself is vulnerability-prone, besides the

security vulnerabilities which are introduced by unreliability of Solidity [51]. Different verification

tools are proposed to analyze the security of deployed smart contracts, a survey of which could

be found in [60]. We used Remix IDE [15] for our Solidity smart contract development which

performs a static analysis during compilation and reports security vulnerabilities such as implicit

typing/visibility, unchecked return values, deprecated constructs, and address checksum and where

they occurred in the code. So, we could be sure that our smart contract code is free of vulnerabilities

which are checked by Remix. Checking the developed smart contract with other available tools for

security vulnerabilities could be considered as a future step, specifically if the contract is going to

be generalized for larger environments.

Device-Cloud Communication As the proposed architecture presents cloud-enabled IoT de-

vices, the security of AWS Greengrass and its communication with IoT devices has a great impact

on the overall security of our system. IoT devices use X.509 public key infrastructure (PKI) certifi-

cates for authentication of devices to Greengrass which are securely tied to AWS IoT policies [6].

We considered best security practices recommended by AWS IoT according which we imple-

mented our architecture in a way that each IoT device has a unique immutable identity stored on

it, which would be used to agree on PKI certificates; so, there would be no hard coded credentials

in lambda functions [16].

Proposed framework for smart home IoT environment still needs to be improved to address

following restrictions:

Continuous Access Control and Mutability Considering the dynamics of a smart home IoT

environment, as a multi-user multi-device environment we need to monitoring the access even after

being granted, and sometimes need the immediate change [150]. Moreover, it is required to use

access quotas as a consumable non-refundable amount of access to some resource. For instance,

the available time for kids to access the PlayStation on a weekend needs to be monitored and access

should be revoked immediately (continuous control) as it has been exhausted (mutability).

Conflicts of Access/Conflict of Interest We may not have policy conflicts in that our proposed

114

framework does not include any negative policies, instead to avoid a role from being conferred

with specific permissions, we utilize prohibitive assignments. However, it is possible to have

administrator interests conflicting. For instance, different homeowners adjust the smart thermostat

to different temperature ranges. As users expected the conflicts to be resolved automatically based

on the survey of access control needs in a smart home [214], it is highly recommended that a policy

resolution algorithm to be incorporated in the access control framework of a smart home [187].

Continuous Usage Control Considering usage as practicing granted access rights by subjects on

objects, it is required for dynamic environments to have continuous control over it. In many cases,

enforcement of the access control necessitates an immediate change in permissions, e.g., when

administrator revokes the access from a user who is currently utilizing it. There are administrative

models proposed to enforce administrative decisions in a session-aware manner to satisfy this

requirement [206].

Quota-based Access Enforcement Some access control requirements in a smart home environ-

ment may call for access quota. Access quota is a consumable amount of resource usage which

is non-refundable. For instance, we may want to limit kids access to entertainment devices to

one hour per day. Such requirements are irrefutable evidences that operational and administrative

access control models should be able to handle quotas. Authors in [184] proposed a quota-based

approach to address the consistency problem in ABAC environments.

115

Chapter 5: DEVICE-TO-DEVICE ACCESS CONTROL FOR IOT

COLLABORATION IN SMART HOME ENVIRONMENTS

The Internet of Things (IoT) has been widely integrated in people’s everyday lives. However,

as an infrastructure of connected heterogeneous devices, IoT has not yet achieved the seamless

integration of device-to-device collaboration. In a smart home IoT, smart devices which are also

known as smart objects/things, include sensors or actuators through which they sense or change

their physical surroundings. These IoT devices expected to exchange their collected data or status

in certain circumstances, in spite of their heterogeneity, viz. working with different communication

protocols, IoT platforms, middleware, data and semantics. Smart IoT environment in which device-

to-device (hereafter D2D) communication happens seamlessly and directly among heterogeneous

devices, is currently more of a vision than reality. Furthermore, in a smart home IoT scenarios

of D2D interactions are inevitable for real-life home automation. Deploying appropriate access

control models and mechanisms is of utmost importance as any unauthorized access to data could

have a cascading violation of privacy, safety and security of users. In this chapter, we propose

a novel device-to-device access control model in the smart home IoT. Our approach relies on

message passing as the paradigm for device-to-device interactions. We further introduce actions

and scenarios reflecting the chain of events in the smart home context, which facilitates scenario-

driven attribute-based access control. Each Scenario is triggered by triggering events, based on

previously set administrative definitions. We define a totally ordered sets of triggering events

using priorities to enable conflict resolution for devices which may run into conflicting commands

delivered though messages in different ongoing scenarios . The viability of the proposed approach

is substantiated via a formal model and an enforcement architecture, backed up by a proof-of-

concept implementation which affirms a trade-off between required authorization and efficacy.

Potential future challenges are explored in the context of smart home IoT platforms. Results of

this research has been submitted to the following conference:

1. Mehrnoosh Shakarami, James Benson, and Ravi Sandhu, "Scenario-Driven Access Control

116

for Device-to-Device Collaboration in Smart Home IoT", 36th Annual IFIP WG 11.3 Con-

ference on Data and Applications Security and Privacy (DBSec’22), July 2022.

5.1 Motivation

Considering home IoT devices as an ecosystem with inter-communications provides a holistic per-

spective toward home automation and brings added convenience. However, it introduces potential

risks to the safety and privacy of home users. For instance, an attacker can compromise a device

to misuse it as a breaking point for unauthorized access to the network to which it is attached. For

instance, a compromised device by an attacker can maliciously act as a breaking point for unautho-

rized access to the network to which it is attached. Thereafter, the hacker can break into the home

and unlock the doors while it is vacant, or change the air-conditioning mode to heat in summer

hot days [130,218]. Although there are handful of studies focused on individual parts of the smart

home IoT, e.g., device authentication [122, 136, 139], communication protocols [79, 84, 167], and

home automation applications [47,74,118], research body on security of interactions in smart home

is quite scarce. In this context, securing D2D interaction through authorization of the flow of infor-

mation among devices is of utmost importance. A maliciously overtaken device by an attacker may

send control information to manipulate other devices’ operations, for instance requesting sensitive

recordings of indoor cameras.

Access control is a crucial requirement in a smart home IoT to regulate the access and autho-

rize communications among IoT devices. Although there is a research body on regulating user-

to-device (hereafter U2D) access in smart homes, no previous work has been devised to regulate

the device-to-device communications through specification of an access control model. Our main

contribution is to formulate an access control model which governs authorized flow of information

among home IoT devices using Attribute-Based Access Control (ABAC). This is the first research

to do so in the smart home context, to the best of our knowledge. An ABAC policy enables captur-

ing the dynamics and fluidity of the smart home environment by entailing contextual/environmental

attributes such as time and location. Moreover, ABAC facilitates defining authorization rules based

117

on attributes of devices which are engaged in D2D communication. Also, using ABAC for defining

D2D access control policy brings its inherent flexibility of defining authorization rules based on

attributes of devices which are engaged in D2D communication. This enables us to define prereq-

uisite conditions in the form of specific attribute values of communicating devices to regulate the

flow of information among them.

One contribution presented in this chapter is utilizing the message passing paradigm for D2D

access control, which is especially suitable for this domain. We inspect the contents of exchanged

messages in D2D communications as attributes of the messages, based on which the authorization

rules in the proposed access control model would be defined. In its essence, our approach defines a

set of authorized flow of messages between devices through establishing access control rules based

on sender/receiver device attributes as well as context attributes. Prohibited D2D communications

(negative permissions) could implicitly be inferred by exclusion of the desired policy rule that

would otherwise authorize that communication if included.

Another contribution is extending our model to include scenarios as a sequence of actions that

may occur in the home IoT environment. Different sequence of actions at the smart home IoT in

our model would be initiated by a trigger, i.e., an event or a set of events in the smart home. As any

D2D action in the smart home IoT is considered to be done via message communication between

devices, we conclude each trigger would initiates a set of message passing among devices in the

smart home IoT environment. Then actions would be coupled with their triggering events to define

scenarios. By defining priorities among triggers, we equipped our model with conflict resolution.

So, if a device is involved in conflicting ongoing scenarios, the conflict could be resolved without

human intervention.

Configuring the of legitimate D2D communications, and corresponding access rules is speci-

fied by human administrators, namely homeowners or parents. For example, a homeowner may

prohibit any communication of indoor cameras’ recording data with other home devices or the

homeowner may prefer any suspicious motion in their vacant house to be reported. We consider

such tasks to be administrative ones based on which desired flow of information would be defined,

118

Figure 5.1: Device-to-Device ABAC Model

that precede the regulation of D2D access control at operational level. Thereafter, no user inter-

vention is required for our mediation of proposed D2D access. We acknowledge the complications

concerning the evolving D2D communication, e.g., different platforms, communication protocols

and data models, and accordingly design a consolidated access control approach in this context. We

consider direct communication of heterogeneous IoT devices out of scope [200], and aim our work

to serve as a gateway-enabled initiative in the scarcely investigated area of D2D access control.

5.2 Message-Based D2D ABAC Authorization Model

In order to design an appropriate access control framework for any IoT environment, capturing

the context which adapts the dynamicity of the IoT ecosystem is quite required [160]. The risk

of insecurity due to unauthorized access varies by the context in which the IoT device operates.

An example of risk could be an IoT device with weak security providing unauthorized access to

the network to which it is attached or serving as a bot in attacker’s control in different attack

scenarios, such as Denial of Service [130]. The context of an entity could be interpreted as any

information to characterize its situation [18]. For an IoT device, the context could be its location,

battery status and owner. Contextual access control is mostly required for access control in a smart

home IoT environment [94], There are some access control proposals in IoT environments which

119

design or create the IoT authorization policies while capturing the context relying on semantic web

technologies [68], RBAC extensions [216], ABAC [53], OrBAC [86] or combination of different

access control paradigms [63].

There are proposals in IoT environments which utilize messages for control and communi-

cation [71], authentication [136], discovery and configuration of new IoT devices [153] and rout-

ing [33]. There also has been some research work on securing communication using access control

models [56]. Alshehri and Sandhu [23] identified the need for controlling data and communica-

tion in IoT environments. A general conceptual model for attribute-based communication control

has been developed by Smriti et al. [40]. Our proposed model is the first access control model

based on the message passing paradigm in IoT environments for authorization of device-to-device

communications.

In this section, we design to capture the IoT device context via the contents of communicated

messages in device-to-device interactions. In our approach, a message is a distinct structured entity

being communicated between two IoT devices. Message attributes are derived from its content.

The contents of a message are structured in a (key,value) format and reflect the communication

context, including the purpose of communication which is reflected in the message classification

followed by its corresponding attributes in the message. Unique to our approach is to propose a

message passing paradigm for IoT device-to-device access control. No two IoT devices would

be able to communicate to each other, unless there is a corresponding authorization rule defin-

ing their possible type of communication. In other words, the set of authorized device-to-device

communications have been defined through establishing access control rules based on attributes of

environment, sender and receiver devices, and the transmitted message. Notably, for the first time

our model presents the IoT D2D communication to be without human intervention.

5.2.1 Conceptual Model

Our conceptual ABAC model is depicted in Figure 5.1. There are two IoT device endpoints in

each communication, subject to authorization, determined as sender device and receiver device.

120

Each of two communicating endpoints (either sender or receiver) has its own assigned attributes,

such as ID, type, location, etc. The attributes of sender/receiver devices are represented as Sender-

Att/ReceiverAtt respectively. Moreover, for each endpoint device there is a set of available func-

tionalities, defined by its manufacturer, and represented as SenderOP/ReceiverOP as depicted in

Figure 5.1. Message introduced in our proposed model as a new element of D2d access control.

Message attributes are extracted from its content and present the context of communication, i.e.,

the attributes of the environment (smart home) in which messages are transmitted. Message at-

tributes are represented as MessageAtt in Fig 5.1. Examples of message attributes could be its

type, location, requested attribute/action from the receiver device, etc. As messages are transitory

elements of the system, they do not exist until being sent/received by corresponding devices. Thus,

we depicted the message entity in a dotted circle in Figure 5.1.

To be in accord with the highly dynamic nature of IoT smart home, we consider Environment

state as an entity of our system represented as ES and utilize its associated attributes, a.k.a. ESAtt

for access control decisions. Examples of ESAtt include daylight, time of the day, weather condi-

tions, etc. Authorization function is defined based on entities’ attributes as depicted in Figure 5.1.

When one IoT device requests to communicate with another IoT device, the authorization function,

which has been defined by CheckAccess predicate in our formal representation, allows or denies

the request.

5.2.2 Formal Model

Proposed model’s formalization has been presented in Table 5.1. The basic components of the

proposed model are discussed below.

Core Components. Include the set of IoT devices (D), their available operations (OP), the set

of environment attributes presenting the environment state (ES). D, ES and M (messages) are

considered as entities (E) in our model. Device operation assignment (DOA) is a vendor-defined

relation which determines the set of available functionalities to a device.

Attribute Functions. We consider each entity’s attribute value type, represented as AttValueType

121

Table 5.1: Message-Based ABAC Model Formalization

Core Components
−D is a set of smart home IoT devices deployed by homeowner.
−OP is a set of operations available on different devices in the system (manufacturer specified).
−ES = {current} is the singleton set, representing the environment state at the current time instant.
−Ent = D ∪ES ∪M is the set of entities in the system, where the set of messages M is defined below.
−DOA : D → 2OP is a one to many relation which associates a device to its available operations as
specified by the device manufacturer.

Attribute Functions
−DAA,EAA are respectively sets of attribute functions which associate a device or the current environ-
ment state with attribute values.
−attValueType : DAA ∪ EAA → {atomic, set}
∀att ∈ DAA ∪ EAA, Range(att), is the attribute range, a finite set of atomic values.
−Each att ∈ DAA∪EAA maps a device/environment to a single atomic value or to a finite set of values,
as follows:

−att : DAA ∪ EAA →

{
Range(att) if attValueType(att) = atomic

2Range(att) if attValueType(att) = set

−attAssignType : DAA ∪ EAA →

{
static set/changed via administrative actions

dynamic set/changed automatically by deployed sensors in home IoT

Message and Message Functions
−M = {m} is the set of all messages in the system.
−m = {(att1 , value1), (att2 , value2), ..., (attn , valuen)}, represents any single message in the system
with n different attributes, each of which is indicated as a (key , value) pair.
−typeSet = {”query”, ”command”, ”info”} is a mandatory first attribute in every message which in-
dicates its type and thereby the rest of message attributes.
−For each m ∈ M , we assume the first attribute determines the type of the message: att1 ∈ typeSet
−typeSetAtt : M → 2DAA ∪ 2DOA, is a function which indicates the set of attribute keys required to
be communicated based on the message type, supposed to be communicated via {att2 , ..., attn} in each
message.

Check Access Predicate
−CheckAccess is evaluated when a sender device (s) tries to send a message (m) to a receiver device (r)
in context of current environment state (current) and is evaluated based on following formula:
−CheckAccess(s : D ,m : M , r : D , current : ES) ≡
CheckAtt(s : D ,m : M , r : D , current : ES) ∧Authorization(s : D ,m : M , r : D , current : ES)

−CheckAtt = True ⇐⇒ typeSetAtt(m) =


⊆ 2DAA(r) if m.value1 = ”query”

∈ DOA(r) if m.value1 = ”command”

⊆ 2DAA(s) if m.value1 = ”info”

−Authorization(s : D ,m : M , r : D , current : ES) is a logical proposition which could be evaluated
to either True or False and is created using following policy rules.
−p ≡ (p) | ¬p | p ∧ p | p ∨ p | ∃x ∈ set .p | ∀x ∈ set .p | set ∆ set | atomic ∈ set
−∆ ≡⊂|⊆|̸⊆| ∩ | ∪

122

to be either atomic, which means it would have one of the values of its range at each moment,

or a set, which could be assigned to a subset from its range. Moreover, any device attribute is

either static, i.e. its value is fixed and statically defined by its owner/manufacturer, or dynamic,

i.e., its value could change as the side effect of message communication with other devices or

the operations done by the device itself. The assignment type for each attribute is represented

as AttAssignType relation. EAA and DAA denote the environment/device attribute assignment

relations which associate attributes to the environment state and device entities respectively.

Message and Message Functions. M is a set of messages. Each message is a set of n attributes in

the form of (key,value) pairs, communicated between two devices. Multi-messaging and message

broadcasts are out of scope. As messages are transient entities, its sender’s ID and receiver’s ID

are not contained in the template of the message definition. The message type is defined as a

mandatory first attribute of every message, which determines the rest of required attributes to be

included in the message. Every message belongs to one of the classifications indicated in typeSet,

restricted to "query", "command", and "info". Message type is reflected in the first pair of its

attribute represented as (”type”, value1) in which value1 could be one of the predefined types in

typeSet.

A message of type "query", inquires into the value of attributes of the receiver, for instance the

outdoor camera may send a query message to the door lock to know its "locked" attribute value.

This message might be frequently communicated, to monitor any changes in the attribute’s value.

The frequency of communication depends on the device, its state changes, and the commands

issued. A message with type "command" orders the receiver device to perform an operation to-

wards its environment, for example a security camera may command the door lock to be locked.

An "info" message informs the receiver about the values of some of the attributes of the sender.

Any message of "query" or "command" requires receiving back a message of type "info" in re-

sponse, which provides the requested attribute value or acknowledges the command’s fulfillment.

An "info" message needs no response.

Check Access Predicate. This function would be evaluated for each message communication to

123

Figure 5.2: Smart Home Use Case for Device-to-Device Communication

TRUE or FALSE which respectively indicates allowance or denial of communication of specified

message from sender to receiver. In order to authorize a message communication between a sender

device and a receiver device, two functions would be checked by CheckAccess function. CheckAtt

checks the feasibility of the message which is intended to be communicated, that is determined

based on message type. If a message is of type "query", the requested attributes by sender must

be a subset of attributes defined for the receiver device through DAA relation. Similarly, for the

"info" messages, the communicated set of attributes has be a subset of sender device’s attributes,

defined via DAA. For messages of type "command", the operation which senders ask the receiver

to do must be a functionality which is available to the receiver and defined through DOA by its

vendor/manufacturer. For instance, if a sender device asks a receiver’s device to do an operation

which is not defined for the receiver, this function returns "false".

5.2.3 Smart Home Use Case

In this section we present a use case to show how the components of our model should be con-

figured to enforce D2D access control in a smart home IoT environment without any need for

human intervention. Consider a smart home IoT with a single owner (say Alice), which comprises

a smart door lock, two indoor smart security cameras and a smart outdoor camera. We assume all

124

indoor and outdoor cameras are equipped with presence sensors, so the outdoor camera is able to

detect Alice arrival/departure and indoor security cameras could detect whether anybody is home.

We represented a simple scenario in which home automation through the proposed access control

model is authorized without any need for human intervention.

Table 5.2: Message-Based D2D Access Control: Smart Home Use Case

Begin of Table
Core Components
D = {OutdoorCamera,SecurityCamera1 ,SecurityCamera2 ,DoorLock}
OP = {Lock ,Unlock ,StartRecording ,StopRecording ,TurnOn,TurnOff }
ES = {current}
DOA = {(SecurityCamera1 , {StartRecording ,StopRecording}),
(SecurityCamera2 , {StartRecording ,StopRecording}),
(DoorLock , {Lock ,Unlock}), (OutdoorCamera, {StartRecording ,StopRecording})}
DAA = {(SecurityCamera1 , {id , type, location, recording , occupied}),
(SecurityCamera2 , {id , type, location, recording , occupied}),
(OutdoorCamera, {id , type, location, recording , incident}), (DoorLock , {id , type, location, locked})}
EAA = {day , time}

Attribute Functions
id(SecurityCamera1) = ”sc1”, type(SecurityCamera1) = ”camera”,
location(SecurityCamera1) = ”indoor”, recording(SecurityCamera1) = {”true”, ”false”},
occupied(SecurityCamera1) = {”true”, ”false”}
id(SecurityCamera2) = ”sc2”, type(SecurityCamera1) = ”camera”,
location(SecurityCamera1) = ”indoor”, recording(SecurityCamera2) = {”true”, ”false”},
occupied(SecurityCamera2) = {”true”, ”false”}
id(OutdoorCamera) = ”oc1”, type(SecurityCamera1) = ”camera”,
location(SecurityCamera1) = ”outdoor”, recording(OutdoorCamera1) = {”true”, ”false”}
incident(OutdoorCamera1) = {”coming”, ”leaving”}
id(DoorLock) = ”dl1”, locked(DoorLock) = {”true”, ”false”}, type(DoorLock) = ”lock”,
location(SecurityCamera1) = ”mainEntrance”,{
attAssignType = static, if att ∈ {”id”, ”type”, ”location”}
attAssignType = dynamic, otherwise

Message and Message Functions
M = {m1,m2,m3,m4,m5,m6,m7}
m1 = {(”type”, ”push”), {(”att”, ”occupied”)}}
m2 = {(”type”, ”push”), {(”att”, ”occupied”)}}
m3 = {(”type”, ”push”), {(”occupied”, ”false”)}}
m4 = {(”type”, ”push”), {(”occupied”, ”false”)}}
m5 = {(”type”, ”com”), {(”op”, ”StartRecording”)}}
m6 = {(”type”, ”com”), {(”op”, ”StartRecording”)}}

125

Continuation of Table 5.2
m7 = {(”type”, ”com”), {(”op”, ”Lock”)}}

Check Access Predicate
−CheckAccess(s : D ,m : M , r : D , current : ES) ≡
CheckAtt(s : D ,m : M , r : D , current : ES) ∧Authorization(s : D ,m : M , r : D , current : ES)

−CheckAtt = True ⇐⇒ typeSetAtt(m) =


⊆ 2DAA(r) if m.value1 = ”query”

∈ DOA(r) if m.value1 = ”command”

⊆ 2DAA(s) if m.value1 = ”info”

−Authorization(s : D ,m : M , r : D , current : ES) ≡ q1 ∨ q2 ∨ q3 ∨ q4

q1 =

[(
m.att1 = ”query”

)
∧
(
typeSetAtt(m) ∈ {”recording”, ”occupied”}

)
∧

(
type(s) = type(r) = ”cameras”

)
∧
(
location(s) = ”outdoor”

)
∧
(
location(r) = ”indoor”

)]

q2 =

[(
m.att1 = ”info”

)
∧
(
typeSetAtt(m) ∈ {(”recording”, ”occupied”}

)
∧

(
type(s) = type(r) = ”cameras”

)
∧
(
location(s) = ”indoor”

)
∧
(
location(r) = ”outdoor”

)]

q3 =

[(
m.att1 = ”command”

)
∧
(
typeSetAtt(m) ∈ {”StartRecording”, ”StopRecording”}

)
∧

(
type(s) = type(r) = ”cameras”

)
∧
(
location(s) = ”outdoor”

)
∧
(
location(r) = ”indoor”

)]

q4 =

[(
m.att1 = ”command”

)
∧
(
typeSetAtt(m) ∈ {”Lock”, ”Unlock”}

)
∧(

type(s) = ”cameras”
)
∧
(
type(r) = ”locks”

)
∧
(
location(s) = ”outdoor”

)
∧(

location(r) = ”mainEntrance”
)]

End of Table

Figure 5.2 represents our use case in which the messages are shown without sender and receiver

fields, as these fields are determined any time a device wants to send a message to another device.

In this use case, sender and receiver are shown in the figure in the period of time during which our

use case is happening. The outdoor camera takes the initiative when it detects Alice is leaving. It

then checks the "occupied" attribute of indoor security cameras via sending query messages with

typeSetAtt specified as {(”att”, ”occupied”)} in m1 and m2 . If the house indicated to be vacant

126

("occupied"=false) by all security cameras, then outdoor camera sends "command" messages to

all cameras to start recording, indicated as {(”op”, ”StartRecording”)} in the typeSetAtt of the

messages m5 and m6 . We assume our devices rely on the authorization done though CheckAccess

predicate and would run the commanded operation. Moreover, outdoor camera sends a command

message to the door lock to be locked, indicated as {(”op”, ”Lock”)} in the typeSetAtt of the

messages m7 .

As soon as Alice is detected to be back by the outdoor camera, it detect arrival incident which

consequently sends appropriate messages to involved devices, so the recording would be stopped,

and the door unlocked. Our proposed access control model could be configured as shown in Ta-

ble 5.2 to implement this use case. Notably, Check Access Predicate depicts the propositions to

define authorized message communications among devices. If any device asks for any attribute of

the other device, which has not been included in the check access predicates, that communication

would be denied. For instance, if the outdoor camera requests the current vacancy status of the

home by sending a query message requesting the occupied attribute, the request would be autho-

rized. However, if it asks another attribute which is not permitted in the Check Access predicate,

that message would not be authorized in Check Access, and hence would not go through. As an-

other example, if the indoor security cameras try to send a command message to the door look and

order it to Unlock, this communication would be denied as it is not included in the set of authorized

communications in Authorization function under Check Access predicate. So, the message would

not be sent though.

5.2.4 Threat Model

Smart home IoT devices are adopted by owners to enhance their lives security and convenience.

Nevertheless, these devices’ susceptibility to cyber attacks could make them disturbing security

holes. For instance, a compromised security camera could be abused to send its recordings to

the unknown outsider, or an attacker may lock you out of your home in case the door lock is

hacked. A hacker with access to your thermostat could fiddle with it, causing your HVAC system

127

to malfunction. Worse yet, a hacker could crank up the oven and cause a house fire while you

are away from home1. Some of the possible attack scenarios, a.k.a attack trees, in a smart home

environment are discussed in [82, 132]. Everything considered, providing security in complex

and dynamic environments such as smart homes remains a noteworthy challenge. We adopt the

Dolev-Yao (DY) threat model [62] in which communicating endpoints cannot be considered as

trusted nodes in the network. According to the DY model, an adversary can tamper with the data

through modification, deletion, or insertion of fake information as the communications rely on

wireless medium. As a confirming evidence of insecure communications, a 2020 IoT threat report

announced 98% of all IoT traffic was not encrypted, thus vulnerable to security threats 2.

We are making the following assumptions for the D2D communication in the smart home in

our research:

1. As many IoT devices are not IP-enabled, using a gateway (GW) node in the network is

inevitable [200]. We assume the GW node in our model is trustworthy and available, which

is a common assumption [156].

2. Attacker is considered to be an outsider to the network with the goal of obtaining illegitimate

access to available functionalities/operations of smart home IoT devices.

3. We do not consider adversaries to have physical access to IoT devices.

Our access control approach provides a defense-in-depth prevention/protection against any out-

sider attack, which is aiming at unauthorized access to an IoT device’s operation or information.

Our model restricts the set of authorized messages being communicated among IoT devices as

there is a subset of one IoT device attributes/operations which are accessible to another device.

Suppose a well-positioned attacker in the network eavesdrops the communications and is able to

impersonate as a legitimate IoT device at home using the known vulnerabilities of the device plat-

form. Our model blocks the attacker’s request for arbitrary information s/he may desire to acquire

from other devices at home. Therefore, it would be arduous for an attacker with no knowledge of
1https://www.bobvila.com/slideshow/the-10-biggest-security-risks-in-today-s-smart-home-53081
2https://app.hushly.com/runtime/content/xVukSNKffbmoOef2

128

established policy rules, to realize which information is available to the cracked device to request

from other home devices, yet that information may be of no use to the attacker. Our model is a

barrier established, a.k.a a defense-in-depth strategy 3.

5.3 Scenario-Based D2D ABAC Authorization Model

Access decisions in a smart home may conflict due to conflicting consequences of different trig-

gered actions, or simply a conflict of interest among owners of IoT devices, since IoT devices

could be shared among smart home users. As an example, consider following two policies:

1. A rule is defined to command the door lock to be locked when an outdoor camera detects the

owner of the house is leaving.

2. Another rule is defined to unlock the door when smoke is detected by fire detectors in the

house.

Suppose the homeowner, say Alice, has left the house and the outdoor camera has sent a command

message to lock the door. Alice is not back yet, so the outdoor camera would not send the finish

message and the door lock remains locked. If a fire is detected at the house, then the fire detector

sends a command message to unlock the door, which conflicts with the current lock command in

effect. This conflict happens because the same device received two messages including conflicting

commands. In this section, we propose a scenario-driven access control model to resolve a class

of conflicts which happen because the same device received two messages including conflicting

commands. Another use case is discussed in detail in the following sections.

5.3.1 Conceptual Model

Conceptual representation of our model is depicted in Figure 5.3. As stated previously, a conflict

may happen due to conflicting command-typed messages received by the same device, initiated

by events which we call triggering events. In fact, conflicting messages are the consequences of

3https://csrc.nist.gov/glossary/term/defense_in_depth

129

Figure 5.3: Device-to-Device Scenario-Driven ABAC Model

two conflicting events at home, viz. leaving the house by owner and then smoke detection by fire

alarm, which we call triggering events, that is to initiate a set of messages to be communicated

among IoT devices, so an appropriate action to be done in response. We use trigger and triggering

event interchangeably in this dissertation.

Definition 5. A triggering event is a specific event or status from the IoT device’s operation, e.g.,

the door is opened or the user is leaving home.

Each trigger would initiate a set of actions, which we collectively call an action. As we consider

any action in smart home IoT to be done via message communication, we define an action as a set

of messages communicated among different devices.

Definition 6. An action a indicates a message m being communicated from a specific sender s to a

specific receiver r and defined as a triplet of a = (s : D ,m : M , r : D). Action is a set of actions

predefined by the administrator/homeowner in the system.

130

A trigger may initiate a set of actions in the smart home, which we collectively call a scenario.

So, each scenario is considered as a set of actions done in the smart home environment. A Trigger

could provoke one or more scenario(s) in the smart home, i.e. the set of actions which has to be

consequently executed in the home. We define priorities as a binary relation among triggers which

conceptually reflect the importance of a trigger and its consequences.

Definition 7. priority is a totally ordered set relation, depicted as (pr,≺) between any two trigger-

ing events tri and trj and is reflected in their (administratively) assigned priority values. So, for

any two triggers tri and trj , it is either (tri ≺ trj) or (trj ≺ trj).

The priority of each scenario would be the same as its triggering event’s priority. Consequently

all messages contained in the actions of that scenario would have the same priority. so any discord

among their constituent messages (accordingly actions) could be resolved by a simple rule of pri-

ority: A message with higher priority would go through, and other conflicting messages would be

disregarded. Thereafter, the precedence of actions would be determined based on their containing

scenario’s priority. A scenario is called active when it has been initiated via the happening of its

corresponding triggering event.

Definition 8. A scenario is defined as a set of actions to be done in the smart home. Besides, the

triggering event which provoked the scenario, its priority, and its active status would also be part

of each scenario’s definition, as shown in Table 5.3.

Our conceptual model is represented in Figure 5.3. Along with other elements of our message-

based model, we add another element Trigger, as defined in Definition 5. Each trigger has at-

tributes shown as TriggerAtt, including its administratively assigned priority, the set of device

attributes/operations defining that trigger, etc. Scenario is another new element, which includes a

sequence of actions in the form of message communications between IoT devices. Each scenario

has its own attributes, shown as ScenarioAtt, including the set of scenario’s contained actions, its

priority, its trigger,its active status, and its assigned id. There is a one-to-many relation between

Scenario and Trigger, which indicates one trigger may initiate multiple scenarios. This relation is

defined through TriggeringEvent-Scenario Assignment relation (TeSA), as shown in Table 5.3.

131

As scenarios are defined at administrative level, we consider providing home admins to de-

fine the consequences of one trigger as multiple scenarios (one-to-many relation). This equips our

model with higher flexibility and facilitates privacy considerations. Any authorized communica-

tion has to be included in the set of authorized actions by home administrators. Also the set of

triggering events and thereby provoked scenarios has to be defined. Each trigger has to be assigned

with a priority, which would be assigned to its consecutive scenarios, their contained actions and

thereby messages. When a device wants to communicate with the other device, in order to craft

the message’s priority a function, namely msgPrA, would be called. If the message’s typeSetAtt

matches with a message in an action, which itself is included in an active scenario, then the priority

of the message would be the same as the scenario’s priority. If the message matches with more

than one scenario, the highest priority would be assigned to it. On the other hand, in case of no

match, the lowest defined priority in the system would be assigned to the message.

Anytime an IoT device sends a message to another IoT device, the Check Access predicate

would be evaluated. Check Access includes three functions. CheckAtt which detects the feasibil-

ity of communication. CheckPriority examines the message priority and decides if the message

should go through or be disregarded. Authorization defines the set of authorized flow of commu-

nications based on attributes of environment, sender and receiver device, and message attributes.

Any conflict would be resolved by authorizing the message communication with higher priority.

5.3.2 Formal Model

Scenario-based model formalization has been represented in Table 5.3. Extra Components, com-

pared to the message-based model, are as follows.

Core Components. An extra core component in the scenario-based model is triggering event

set (TE), which could be any change in the IoT device(s)’ attributes or an action which has been

done by an IoT device. The set of entities include the set of devices, environment state, messages,

triggering events and scenarios.

Attribute Functions. CurrentOP is a new function indicating the operation each device is doing

132

at the current instant of the time. CurrentPR is the priority of the current operation which is being

run by the device at the current instant of time, basically inferred to be the same as the priority of

the command message which made the device run that operation. For each device, conflict defines

a set of conflicting pairs of functionalities available to that device. For instance, (Lock ,Unlock)

should be included in the conflict(doorLock), as those functionalities cannot happen simultane-

ously, so they are conflicting. Priority is defined as a totally ordered set which defines a strict order

between any two triggers in the system. Each trigger would be administratively assigned with its

priority, which then at operational level is retrieved via prA function.

Table 5.3: Scenario-Based D2D Access Control Model

Begin of Table
Core Components
−D ,OP ,ES have the same definition as Message-Based Model.
−DOA,DAA,EAA remain the same as Message-Based Model.
−TE ⊂ D × {2DOA ∪ 2att(d :D)}, is a set of triggering events.
att has the same definition as in Table 5.1.
−Ent = D ∪ ES ∪M ∪ S ∪ TE is the set of entities in the system, where the set of messages M and
scenarios S are defined below.

Attribute Functions
−currentOP : D × {current} → 2DOA ∪ ∅, is the operation each device is doing at the current time
instant.
−currentPR : D × {current} → (pr ,≺), is the priority of the command that the device is running at
the current time instant. (pr ,≺) is defined below.
−conflict : D → 2DOA×DOA ∪ ∅, is a set of conflicting operation pairs defined for each device by the
administrator, e.g. homeowner.
−conflict(d : D) = {(opi , opj) | opi ∈ DOA(d) ∧ opj ∈ DOA(d)}.
- All other functions are as defined in Table 5.1.
−(pr,≺) is a totally ordered set of priorities with at least two distinct elements of ⊥ and ⊤ which
correspondingly represent the lowest and highest priorities in the system.
−prA : TE → (pr ,≺) is a function which retrieves priority of the triggering events in the system,
originally assigned by system administrator/homeowner.

Messages, Scenarios and Auxiliary Functions
−A, is a set of actions in the system.
−For each action a ∈ A : a = (s : D,m : M, r : D), action is defined as a triplet indicating
communication of message m from device s to device r.
−S is the set of scenarios in the system defined by system’s administrator/homeowner, which is defined
below.

133

Continuation of Table 5.3
−TeSA : TE → 2 S is a one-to-many relation which defines a (set) of scenario(s) that would be
provoked by a triggering event te ∈ TE .
−For each s ∈ S : s =(
Actions ⊆ A, trs : TE , prs : (pr ,≺), active : {”true”, ”false”}, id

)
, and prs = prA(trs).

−active(s : S) =

{
”true” while trs is in effect.
”false” As soon as trs , triggering event, reverts.

−typeSet = {”query”, ”command”, ”info”} is a mandatory attribute of every message which
indicates its type and thereby the rest of message attributes.
−For each m ∈ M , we assume the first attribute must determine the type of the message and the second
attribute must determines its priority: att1 ∈ typeSet , att2 ∈ (pr ,≺)
−typeSetAtt : M → 2DAA ∪ 2DOA, is a function which indicates the set of attribute keys required to be
communicated based on the message type, supposed to be communicated via {att3 , ..., attn} in each
message.
−msgPrA : D ×M ×D → (pr,≺) is a function which is checked each time a device sd wants to
create a command message m and assigns proper priority to it, in order to be sent to device rd .
−msgPrA(s : D,m : M, r : D) =

prs if
(
m.att1 = ”command”

)
∧
(
∃s ∈ S : active(s) = ”true”

)
∧(

∃a ∈ Actions : a.s = sd ∧ a.r = rd ∧ typeSetAtt(a.m) = typeSetAtt(m)
)

⊥ otherwise

Chech Access Predicate
−CheckAccess is evaluated when a sender device (s) wants to send a message (m) to a receiver device
(r) in the context of current environment state (current) and is evaluated based on following formula:
−CheckAccess(s : D ,m : M , r : D , current : ES) ≡
CheckAtt(s : D ,m : M , r : D , current : ES) ∧ CheckPriority(s : D ,m : M , r : D , current : ES)∧
Authorization(s : D ,m : M , r : D , current : ES)

−CheckAtt = True ⇐⇒ typeSetAtt(m) =


⊆ 2DAA(r) if m.value1 = ”query”

∈ DOA(r) if m.value1 = ”command”

⊆ 2DAA(s) if m.value1 = ”info”

−CheckPriority(s : D ,m : M , r : D , current : ES) ≡
”false” if (m.att1 = ”command”)∧[

((m.”op”, currentOP(r)) ∈ conflict(r)) ∧ (m.value2 ≺ currentPR(r)
]

”true” otherwise
−Authorization(s : D ,m : M , r : D , current : ES) is a logical proposition which could be evaluated
to either True or False and is created using following policy rules.
−p ≡ (p) | ¬p | p ∧ p | p ∨ p | ∃x ∈ set .p | ∀x ∈ set .p | set ∆ set | atomic ∈ set
−∆ ≡⊂|⊆|̸⊆| ∩ | ∪
End of Table

Messages, Scenarios and Auxiliary Functions. In formal representation of our model, A is the set

of predefined actions, which basically includes a message and its sender and receiver. Each action

134

(a) is representing a message being communicated between two devices. S is a set of scenarios in

the system. Each scenario, s, is representing a set of actions happening via messaging among IoT

devices in the smart home. TeSA is a function which defines a (set) of scenario(S) which would be

triggered as the result of a given triggering event. As far as the triggering event is still effective, the

triggered scenario(s) would also be going on and considered to be active. Priority of each scenario

is the same as its trigger, and the priority value of messages included in one scenario would be the

same as its containing scenario. Priorities are defined as binary relations between different triggers.

Check Access Predicate. The Check Access predicate includes three parts, each of which is

responsible for a portion of access control in our extended model, and access would be granted to

communicated the desired message if and only if all three following functions return TRUE:

1. CheckAtt(s : D ,m : M , r : D , current : ES) is a function which checks the feasibility of

communication based on the message type and typeSetAtt in the message. It does the same

checks as described in Section 5.2.2.

2. CheckPriority(s : D ,m : M , r : D , current : ES) is specific to the scenario-based model

proposed in this section. As messages may conflict only if they are of type command, this

function returns TRUE, for all messages of type info or query. For command messages, it

returns FALSE when the requested operation via command message is in conflict with the

current operation being done at the moment on the receiver or if the message to be sent is

assigned with lower priority. Otherwise, it returns TRUE.

3. Authorization(s : D ,m : M , r : D , current : ES) is a logical proposition which deter-

mines the set of allowed communications in the smart home IoT environment between dif-

ferent devices.

5.3.3 Smart Home Use Case

Figure 5.4 represents a smart home use case for our scenario-based model. Sender and receiver

fields in the messages are depicted in the figure, arrows represent the direction of communications.

135

Figure 5.4: Smart Home Use Case for Scenario-Driven Device-to-Device Communication

This use case includes a two-story smart home IoT containing a soil moisture meter, an outdoor

camera, a leakage detector, a sprinkler and two valves for first and second floor water flow control.

A Soil moisture meter determines when the sprinkler starts spraying water by monitoring moisture

level, and the leakage detector is responsible to cut off the water when any abnormal flow is dis-

covered. We chose to exemplify scenario-based model by a different use case than previous one in

Section 5.2.3, in which outdoor camera was responsible for all communications, however, herein

different devices are messaging each other. Notably, none of the proposed models, not message-

based, nor scenario based, need a central device to be responsible for all message communications.

Here, there are two scenarios going on. Scenario s1 is initiated when the Soil Moisture Meter

senses the soil moisture level to be lower than a specified threshold, so it sends a query message

to the Security Camera in the backyard to inquire the outdoor’s vacancy status, determined by

occupied attribute value. If the backyard is vacant (occupied = false), then Soil Moisture Meter

sends a command message with normal priority to turn on the Sprinkler. After a while when

the sprinker is still spraying water, scenario s2 is triggered when the Leakage Detector detects a

leak, so it sends a info message to the Main Water Meter. Thereafter, Main Water Meter sends a

136

command message with high priority to first/second-floor Valves, and Sprinkler to shut the flow

off. Here the message to shut off the Sprinkler would go through because the currenPR is normal

and the message from the Main Water Meter has higher priority. So, Sprinkler faces a conflict as it

has received two conflicting commands from Soil Main Moisture Meter and Leakage Detector. In

our model, Sprinkler executes whatever operation included in the command message with higher

priority, which is shut off from Leakage Detector.

Table 5.4: Scenario-Based D2D Model: Smart Home Use Case

Begin of Table
Core Components
D = {LeakageDetector, MainWaterMeter, SoilMoistureMeter, SecurityCamera, Sprinkler,
FirstFloorValve, SecondFloorValve}
OP = {StartRecording, StopRecording, StartMeasure, StopMeasure, StartMonitor, StopMonitor,
TurnOn, ShutOff}
ES = {current}
DOA = {(SecurityCamera,{StartRecording, StopRecording}), (LeakageDetector,{StartMonitor,
StopMonitor}), (MainWaterMeter, {StartMeasure, StopMeasure}), (SoilMoistureMeter, {StartMonitor,
StopMonitor}), (Sprinkler, {TurnOn, ShutOff}), (FirstFloorValve, {TurnOn, ShutOff}),
(SecondFloorValve, {TurnOn, ShutOff})}
DAA = {(SecurityCamera,{id, type, location, recording, occupied}), (LeakageDetector,{id, type, leak}),
(MainWaterMeter, {id, type, Measuring}), (SoilMoistureMeter, {id, type, droughtStatus}),
(FirstFloorValve, {id, type, location, flowStatus}), (SecondFloorValve, {id, type, location, flowStatus}),
(Sprinkler, {id, type, location, flowStatus})}
EAA = {day, time}
TE = {(LeakageDetector,(leak,"true")), (SoilMoistureMeter,(droughtStatus,"dry"))}
−Ent = D ∪ ES ∪M ∪ S ∪ TE

Attribute Functions
(pr,≺) = (⊥ ≺ low ≺ normal ≺ high ≺ ⊤)
id(SecurityCamera) = "sc", type(SecurityCamera) = "cameras", location(SecurityCamera) = "outdoor",
recording(SecurityCamera) = {"true","false"}, occupied(SecurityCamera) = {"true","false"},
conflict(SecurityCamera)={(StartRecording,StopRecording)}

id(LeakageDetector) = "ld", type(LeakageDetector)= "detectors", subtype(LeakageDetector)="leak",
leak(LeakageDetector) = {"true","false"}, conflict(LeakageDetector)={(StartMonitor, StopMonitor)}

id(MainWaterMeter) = "wm", type(MainWaterMeter)= "valves",
subtype(MainWaterMeter)="watermeter",Measuring(MainWaterMeter) = {"true", "false"},
type(MainWaterMeter)= "valves", conflict(MainWaterMeter)={(StartMeasure, StopMeasure)}

137

Continuation of Table 5.4
id(SoilMoistureMeter) = "sm", type(SoilMoistureMeter)= "detectors",
droughtStatus(SoilMoistureMeter) = {"dry","moist"}, conflict(SoilMostureMeter)={(StartMonitor,
StopMonitor)}

id(FirstFloorValve) = "v1", type(FirstFloorValve)="valves", location(FirstFloorValve)="indoor",
flowStatus(FirstFloorValve) = {"flowing", "halted"}, conflict(FirstFloorValve)={(TurnOn, ShutOff)}
id(SecondFloorValve) = "v2", conflict(SecondFloorValve)={(TurnOn, ShutOff)},
flowStatus(SecondFloorValve) = {"flowing", "halted"},

id(SecondFloorValve) = "v1", type(SecondFloorValve)="valves",
location(SecondFloorValve)="indoor", flowStatus(SecondFloorValve) = {"flowing", "halted"},
conflict(SecondFloorValve)={(TurnOn, ShutOff)}

id(Sprinkler) = "s", type(Sprinkler)="valves", location(Sprinkler)="outdoor", flowStatus(Sprinkler) =
{"flowing", "halted"}, conflict(Sprinkler)={(TurnOn, ShutOff)}

−attAssignType(d, att) =

{
static if att ∈ {”id”, ”type”, ”subtype”, ”location”}
dynamic otherwise

Message, Scenarios and Auxiliary Functions
−(pr,≺) = (⊥ ≺ low ≺ normal ≺ high ≺ ⊤)
−prA = {((LeakageDetector , leak = ”true”), high),
((SoilMoistureMeter , droughtStatus = ”dry”),normal)}
−A = a1, a2, a3, a4, a5, a6, a7
−a1 = (SoilMoistureMeter , {(”type”, ”query”), (”att”, ”occupied”)},SecurityCamera)
−a2 = (SecurityCamera, {(”type”, ”info”), (”occupied”, ”false”)},SoilMoistureMeter)
−a3 = (SoilMoistureMeter , {(”type”, ”command”), (”op”, ”TurnOn”)},SecurityCamera)
−a4 = (LeakageDetector , {(”type”, ”info”), (”leak”, ”true”)},MainWaterMeter)
−a5 = (MainWaterMeter , {(”type”, ”command”), (”op”, ”ShutOff ”)},FirstFloorValve)
−a6 = (MainWaterMeter , {(”type”, ”command”), (”op”, ”ShutOff ”)},SecondFloorValve)
−a7 = (MainWaterMeter , {(”type”, ”command”), (”op”, ”ShutOff ”)},Sprinkler)
−S = {s1, s2}
−s1 = {Actions1 , prs1 , trs1 , active, id}
−Actions1 = {a1 , a2 , a3}, trs1 = (SoilMoistureMeter , (droughtStatus, ”dry”), prs1 = ”normal”
−s2 = {Actions2 , prs2 , trs2 , active, id}
−Actions2 = {a4 , a5 , a6 , a7}, trs2 = (LeakageDetector , (leak , ”true”), prs2 = ”high”
−id(s1) = s, id(s2) = s ′

−active(s1) and active(s2) is determined based on definition in Table 5.3, at each instant of time.
−M = {m1 ,m2 ,m3 ,m4 ,m5 ,m6 ,m7}
m1 = ((”type”, ”query”), (”pr”,msgPrA(sender1 ,m1 , receiver1)), {(”att”, ”occupied”)”})
m2 = ((”type”, ”info”), (”pr”,msgPrA(sender2 ,m1 , receiver2)), {(”occupied”, ”false”))}
m3 = ((”type”, ”command”), (”pr”,msgPrA(sender3 ,m3 , receiver3)), {(”op”, ”turnOn”))}
m4 = ((”type”, ”info”), (”pr”,msgPrA(sender4 ,m4 , receiver4)), {(”leak”, ”true”)”})
m5 = ((”type”, ”command”), (”pr”,msgPrA(sender5,m5, receiver5)), {(”op”, ”shutOff”)”})
m6 = ((”type”, ”command”), (”pr”,msgPrA(sender6,m6, receiver6)), {(”op”, ”shutOff”)”})
m7 = ((”type”, ”command”), (”pr”,msgPrA(sender7,m7, receiver7)), {(”op”, ”shutOff”)”})

138

Continuation of Table 5.4

-After s1’s activation:

{
msgPrA(m1) = msgPrA(m2) = ⊥
msgPrA(m3) = ”normal”

-After s2’s activation:

{
msgPrA(m4) = ⊥
msgPrA(m5) = msgPrA(m6) = msgPrA(m7) = ”high”

Attribute Authorization Function
−CheckAccess(s : D ,m : M , r : D , current : ES) ≡
CheckAtt(s : D ,m : M , r : D , current : ES) ∧ CheckPriority(s : D ,m : M , r : D , current : ES)∧
Authorization(s : D ,m : M , r : D , current : ES)

−CheckAtt(s : D ,m : M , r : D , current : ES) = True ⇐⇒

typeSetAtt(m) =


⊆ 2DAA(r) if m.value1 = ”query”

∈ DOA(r) if m.value1 = ”command”

⊆ 2DAA(s) if m.value1 = ”info”

−CheckPriority(SoilMoistureMeter ,m1 ,SecurityCamera, {current}) ≡ ”true”
−CheckPriority(SecurityCamera,m2 ,SoilMoistureMeter , {current}) ≡ ”true”
−CheckPriority(SoilMoistureMeter ,m3 ,Sprinkler , {current}) ≡ ”true”
−CheckPriority(LeakageDetector ,m4 ,MainWaterMeter , {current}) ≡ ”true”
−CheckPriority(MainWaterMeter ,m5 ,FirstFloorValve, {current}) ≡ ”true”
−CheckPriority(MainWaterMeter ,m6 ,SecondFloorValve, {current}) ≡ ”true”
−CheckPriority(MainWaterMeter ,m7 ,Sprinkler , {current}) ≡ ”true”

−Authorization(s : D ,m : M , r : D , current : ES) ≡ q1 ∨ q2 ∨ q3 ∨ q4 ∨ q5

q1 =

[(
m.att1 = ”info”

)
∧
(
typeSetAtt(m) ∈ {”leak”}

)
∧
(
type(s) = ”detectors”

)
∧

(
type(r) = ”valves”

)
∧
(
subtype(r) = ”watermeter”

)]

q2 =

[(
m.att1 = ”command”

)
∧
(
typeSetAtt(m) ∈ {”ShutOff ,TurnOn”}

)
∧
(
type(r) =

type(s) = ”valves”
)
∧
(
subtype(s) = ”watermeter”

)]

q3 =

[(
m.att1 = ”query”

)
∧
(
typeSetAtt(m) ∈ {”occupied”}

)
∧
(
type(s) = ”detectors”

)
∧

(
subtype(s) = ”soil”

)
∧
(
type(r) = ”cameras”

)
∧
(
location(r) = ”outdoor”

)]

q4 =

[(
m.att1 = ”info”

)
∧
(
typeSetAtt(m) ∈ {”occupied”}

)
∧
(
type(s) = ”camera”

)
∧

(
location(source) = ”outdoor”

)
∧
(
type(r) = ”detectors”

)
∧
(
subtype(r) = ”soil”

)]

139

Continuation of Table 5.4

q5 =

[(
m.att1 = ”command”

)
∧
(
typeSetAtt(m) ∈ {”TurnOn,ShutOff ”}

)
∧
(
type(s) =

”detectors”
)
∧
(
subtype(s) = ”soil”

)
∧
(
type(r) = ”valves”

)
∧
(
location(r) = ”outdoor”

)]
End of Table

Our proposed access control could be configured as presented in Table 5.4 to achieve following

goals:

1. Authorize Soil Moisture Meter and Leakage detector to initiate appropriate set of actions by

activating above-mentioned scenarios.

2. Enabling any device which receives conflicting command messages to resolve the conflict

relying on priorities.

The smart home IoT devices, their attributes and available operations, and environment at-

tribute and state are represented as core components of our model. The set of attributes for

each device are represented under attribute functions. Five different priorities have been de-

fined as a binary relation between scenarios and their contained messages. There are two

different scenarios, s1 and s2 , each of which is a set of actions. The order of commu-

nicated messages in each scenario is indicated by their subscript number. Based on as-

signed priorities to triggers, which are (LeakageDetector , (leak , true)) with high priority and

(SoilMoistureMeter , droughtStatus = dry)) with normal priority, indicated by prA function. The

two scenarios of s1 and s2 would also have the same prioritites astheir triggering events and are

comparable as s1 ≺ s2. Check Access predicates have also been presented in Table 5.4, which

include policy rules for CheckAtt, CheckPriority and Authorization of message communication

between IoT device pairs.

140

Figure 5.5: Device-to-Device Architecture

5.4 Enforcement Architecture

The Internet Architecture Board (IAB) has released an informational RFC [200] considering het-

erogeneity of IoT devices which desired to directly interoperate and communicate. Based on this,

Beltran et al. proposed five IoT communication models and identified three architectures that

embody decentralized authorization of devices [34]. However, direct device-to-device communi-

cations is considered to be a long haul. In this section, we propose a decentralized enforcement

architecture for our model, in which different IoT devices delegate the authorization decisions

to an external entity. Even if heterogeneous IoT devices could communicate directly to each

other, reliance upon an external entity to embrace decentralized access control is still desirable,

as restricted IoT devices would no longer need to maintain/apply authorization information/rules

themselves [34].

Our enforcement architecture is depicted in Figure 5.5, which is designed based on AWS IoT.

However, our enforcement architecture is not specific to AWS and could be designed independently

of any cloud provider. We use AWS because of its simplicity, security and flexibility and being

141

agnostic to device type and OS 4. AWS could be used to manage a variety of devices ranging from

micro-controllers to connected cars, as it is agnostic to the device type and OS. AWS IoT Device

Management is agnostic to device type and OS 5. We deployed our architecture utilizing AWS

Greengrass SDK 6.

AWS Greengrass (GG) is an edge run-time which seamlessly extends AWS to physical devices,

so IoT devices would be able to communicate with each other through local messaging. It also acts

as an intermediary for communications with the cloud, even for not IP enabled devices, or while

network connection is intermittent. Greengrass utilization enables devices to autonomously react

to local events and securely communicate with each other over the local network. Each device

has a corresponding shadow (virtual device) on Greengrass, which persistently keeps the latest

known state of the device. Device shadows remain accessible all the time, even if the device itself

is not connected to the cloud. Devices would interact over MQTT 7 protocol in AWS, which is

a lightweight machine-to-machine publish-subscribe protocol designed for constrained devices.

Using MQTT, devices will communicate on their private topics, device/shadow/update, to update

their shadows, and trigger the local computation function, known as Lambda function(λ) 8.

As devices communicate their state on their private topic, it would be stored locally, which

is known as the device shadow and is accessible only by themselves and the lambda function.

Authorization on AWS is policy-based. We defined access control in the policy.json file. Autho-

rization rules in the policy file have been defined based on the status of communicating IoT devices

(devices’ attributes), environmental context, and the contexts of communicated messages. When

Lambda code is triggered, it executes the code we developed to check the policy. If the policy

rules grant permission, the results will be communicated, the shadow states will be updated, and

the physical device will respond appropriately.

4https://aws.amazon.com/iot-device-management/
5https://aws.amazon.com/iot-device-management/
6https://docs.aws.amazon.com/greengrass/
7http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html
8https://aws.amazon.com/lambda

142

Table 5.5: Full Experiment and Device State Update Statistics.

Expr. Min 10% 25% Median 75% 90% 95% 99% Max
Full Timer 24.19 25.36 26.04 34.92 36.70 39.09 42.93 47.36 67.20
State Update 3.50 3.61 3.73 5.71 6.61 6.90 7.37 10.21 21.85

5.5 Implementation

5.5.1 Experiment Setup

As a proof-of-concept, we simulated two smart home use cases discussed in Sections 5.2.3

and 5.3.3. Our use cases implemented using AWS IoT Greengrass v1, running on a dedicated

virtual machine with one virtual CPU, 2 GB of RAM and 20 GB hard drive. The operating system

of the virtual machine is Ubuntu 20.4.2 LTS and it is connected to a 1 Gbps network. We wrote the

AWS lambda code on Greengrass in Python 3.8 and it is running in a long-lived isolated docker

environment with limited RAM of 64 MB. Any message communication between two IoT devices

would wake up the lambda function as it is reflected in the device shadows on Greengrass and

would be published to lambda. Then, lambda checks access control policy which has been con-

tained in policy.json based on the contents of the message, reflecting the attributes and attributes

of device shadows, i.e. devices’ attributes, to govern the requested communication. Any changes

in devices’ attributes as a result of authorization decisions would be reflected in device shadows,

according to what has been defined in the IMPACT function in our model.

5.5.2 Implementation Results

Both scenarios we implemented have a similar computational process. A device would send a

message to another device through the GG lambda function. Upon receiving the message, lambda

spins up multiple threads, loads the necessary Python libraries, and begins processing our code.

This initial process results in a few spurious results that have particularly long processing delays

143

Figure 5.6: Time per Action on Greengrass

shown at the top 1% of results depicted in Table 5.5. As a message received by lambda, once

the sender and destination devices are authenticated, the code would proceed. In general, lambda

would inquire the shadow status of the device(s) as necessary, the priority levels of messages, then

executes a series of commands to various devices based on the policy.json. Any priority conflicts

between command messages received by the same device is resolved based on this rule: the higher

priority is dominant. In terms of two conflicting commands with the same priorities, we run the

most recent command. If the scenario did not exist in the policy, the situation would be considered

invalid, disregarded, and no additional commands would be executed.

Our implementation results show an average time for a device to execute an action using our

model/architecture, have lambda process it, and update the respective devices is, on average, 35

milliseconds. This complete process is indicated as ’full timer’ and is an average over 500 trials and

includes transmission time going to/from lambda to the devices over a 1 Gbps network connection.

144

A more detailed breakdown of the analysis is included in Table 5.5. The time to update a device’s

state, for example a door lock going from unlocked to locked, is on average 6ms. The various use

cases and actions are also timed and shown as boxplots in Figure 5.6, where the whiskers are the

minimum and maximum values collected across 500 trials for each experiment. The box shows

the 25 percentile and 75 percentile of the data, with median as the line contained inside the box.

5.6 Discussion: Model/Architecture Properties and Limitations

The proposed model in this research is unparalleled as it provides specification for mediating access

in device-to-device communications for the first time. Besides being context-aware, dynamic and

lightweight, our model also provides following features.

Continuity of Access. Our message-based access control paradigm relies on attributes of sender,

receiver, environment, and the (key,value) attribute pairs communicated via messaging. However,

attributes of sender/receiver devices may change at any time as a result of an operation or an

alteration in its environment, a.k.a mutability [171]. It is required for an access control model

designed for dynamic IoT environments to maintain regular surveillance over attribute values of

participating devices and continuously evaluate the policy based on that. We utilized AWS for our

model enforcement, in which lambda would be informed on any changes in participating device

attributes via subscription to corresponding topics. Therefore, in case of any changes in attributes

of device or environment topics, lambda would be triggered, re-evaluate the policy and adjust

the access authorizations accordingly. For example, in use case discussed in Section 5.3.3, if the

outdoor camera detects the owner returns home, it send a finish message to door lock and cameras

for unlocking the door and stop recording. Here, the continuity is supported via our proposed

enforcement architecture. In order to provide continuity as one of the model’s elements, regardless

of its enforcement method, the continuous retrieval and evaluation of entity/environment attributes

should be incorporated in the model. Compatible with requirements of modern IoT environments,

UCON [171] would be well suited to equip the access control model to promptly react to attribute

145

changes while the previously granted access is being utilized. Moreover, continuity of access

control could be concluded when the proposed model is able to revoke the previously granted

access in case of any unintended change in attributes. We justify our proposal still lacks access

continuity at model level. There are some research works trying to add continuity at application

level in IoT environments by integration of MQTT and UCON [128].

Architecture Agnostic. AWS as the enforcement architecture augmented our framework with

some desired features, however, our model is not peculiar to it.

146

Chapter 6: CONCLUSION AND FUTURE WORK

This chapter provides a summary of contributions in this dissertation and some open research

problems which potentially could be further investigated.

6.1 Summary

This dissertation fundamentally contributes to the operational and administrative access control in

smart home IoT environments. We conduce to improve safety and security in this rapidly evolving

application of IoT by providing access control-related solutions which affect or directly provide

authorization in a smart home.

Our first contribution addresses the inconsistency problem in smart homes in which intermit-

tent internet connections may cause access violation resulting from exposure of decision point to

outdated information. We formulated different levels of safety and consistency as formal specifi-

cations for any distributed attribute-based access control environment in general, along with smart

home IoT interpretations. Moreover, we introduced the refresh concept instead of old revocation

check, for the first time, which provides new attribute values rather than simply invalidating old

ones. Utilizing this approach augments these environments with more safety and availability. We

also realize the safety and consistency may be compromised due to concurrent usage of mutable

attributes. To tackle that, we presented two quota-based categories of practical scenarios including

user-based and service based, exemplified in a smart home environment.

Second, we recognize an access control solution to be incomplete if administration is not han-

dled. We undertake the need to develop administrative models in order to govern access changes in

a dynamically changing environment such as smart home IoT. So, the ever-changing nature of op-

erational models has to be considered in order to efficiently perform administration. We proposed

a role-based access control administrative model based on EGRBAC, which was the operational

model of our choice for the smart home IoT. We realize administration to be best done if decen-

tralized, which helps to manage the single point of failure as well as improving users’ privacy

147

by introducing administrative units in our solution. We outlined the formal specification of the

proposed model and consolidated the presented ideas by proposing smart home case studies.

Furthermore, we presented a decentralized, ledger-based, publish-subscribe based architecture

for the administration of access in a smart home IoT environment to preside at the assignments

of underlying operational authorizations. Proposed architecture is endorsed by a proof-of-concept

implementation on top of Ethereum official testnet, i.e. Ropsten. We utilized smart contracts

to ensure the integrity of administration supplemented by intrinsic benefits of blockchain to be

distributed and transparent. We recognize blockchain could bring its intrinsic advantages of dis-

tribution, transparency, and scalability to the administration of access, while it is not yet practical

to be used for operational access control which is reassured based on our implementation results.

This assertion sheds light on the hype around utilizing blockchain at the operational level of access

control, whereas administrative solutions are shown to successfully utilize blockchain benefits.

Uttermost, we proposed a novel device-to-device access control solution for the smart home

IoT environment. Despite the extensive research on enabling technologies for interoperability of

heterogeneous IoT devices, designing appropriate access control models is scarcely investigated.

Our approach defines a set of authorized message flows between devices through establishing

access control rules, by unprecedentedly utilizing the message passing paradigm for access control.

Moreover, we introduced the concept of scenarios, reflecting a chain of actions in the smart home

initiated by a triggering event. We defined a total order relation based on priorities among triggers,

thereby scenarios and their contained messages. So, we can handle the probable conflicts when

the same device receives conflicting commands or simply drop the messages with lower priority.

Viability of our approach is substantiated via a formal model and an enforcement architecture,

which is also backed up by a proof-of-concept implementation.

6.2 Future Work

There are several potential directions of research which could be explored as extensions to the

research presented in this dissertation, as follows:

148

1. No access control framework considered as a complete solution, without including both

operational and administrative approaches. Developing administrative solutions for device-

to-device interoperability is a direction which could be further investigated. In this context,

proposed approach for device-to-device access control, could be coupled with an adminis-

trative model to configure the legitimate D2D communications, and define corresponding

access rules.

2. Building access control solutions which are tailored to specific features of IoT devices and

environments is an utmost requirement. Another research direction is to propose a compre-

hensive IoT-specific authorization solution at the operational level of access control, which

entails both user-to-device and device-to-device access mediation.

3. To cope with authorization requirements in dynamic IoT environments, utilizing access con-

trol approaches which consider mutability of attributes of subjects and objects in an IoT

application environment is of utmost importance to be considered. Moreover, monitoring

the access after being granted, a.k.a continuity of access control is required for most IoT

applications. It is also desirable for any access control model to be able to revoke the previ-

ously granted access in case of any unintended change in attributes. Intrinsic consideration

of mutability and continuity of access at model-level, is to be sought-after, so the approach

would be agnostic to any specific architecture or implementation technology.

4. A factual interoperability solution for IoT environments would be obtained when there is

no need to rely on a gateway for communication of heterogeneous IoT devices. To enable

device-to-device interoperability, it is required for communication of two or more IoT plat-

forms to be facilitated.

5. Although there is a single administrative role assigned for each administrative unit/sub-unit

in our model in this dissertation, dissension among different administrator users in that role

is possible. So, the permission granted by one administrator user may be revoked shortly

after by another administrator user. Moreover, conflicts may happen due to different devices

149

being shared in a smart home IoT among different home users. Therefore, it is required to

incorporate a conflict resolution policy in the model.

150

BIBLIOGRAPHY

[1]

[2] Ethereum evm illustrated. Available at https://github.com/takenobu-hs/

ethereum-evm-illustrated.

[3] Saving the future of the Internet of Things, 2015. Available at https://www.ibm.com/

downloads/cas/Y5ONA8EV.

[4] Amazon GreenGrass, 2021. Available at https://docs.aws.amazon.com/

greengrass/.

[5] Chrony, 2021. Available at https://chrony.tuxfamily.org/.

[6] Device authentication and authorization for AWS IoT Greengrass, 2021. Available

at https://docs.aws.amazon.com/greengrass/v1/developerguide/

device-auth.html.

[7] Ethereum 2.0 proof of stake, 2021. Available at https://ethereum.org/en/

developers/docs/consensus-mechanisms/pos/.

[8] ETHEREUM: A secure decentralised generalised transaction ledger, EIP-150 REVISION,

2021. Available at https://gavwood.com/paper.pdf.

[9] Ethereum Average Block Time Chart, 2021. Available at https://etherscan.io/

chart/blocktime.

[10] Ethereum races clock to collect enough coins for big upgrade, 2021. Avail-

able at https://www.bloomberg.com/news/articles/2020-11-23/

ethereum-races-clock-to-collect-enough-coins-for-huge-upgrade.

[11] Ethereumnetworks, 2021. Available at https://ethereum.org/en/developers/

docs/networks/.

151

[12] Hype cycle for emerging technologies, 2021. Available

at https://www.gartner.com/smarterwithgartner/

3-themes-surface-in-the-2021-hype-cycle-for-emerging-technologies.

[13] Infura, 2021. Available at https://infura.io/product.

[14] OWASP IoT Project, 2021. Available at https://wiki.owasp.org/index.php/

OWASP_Internet_of_Things_Project#tab=IoT_Top_10.

[15] Remix IDE, 2021. Available at https://remix.ethereum.org/.

[16] Security best practices for AWS IoT Greengrass, 2021. Available at

https://docs.aws.amazon.com/greengrass/v1/developerguide/

security-best-practices.html.

[17] Statista: Smart Home Market, 2021. Available at https://www.statista.com/

outlook/dmo/smart-home/united-states.

[18] Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel Davies, Mark Smith, and Pete

Steggles. Towards a better understanding of context and context-awareness. In International

symposium on handheld and ubiquitous computing (HUC). Springer.

[19] Atul Adya. Weak consistency: a generalized theory and optimistic implementations for

distributed transactions. PhD thesis, MIT, 1999.

[20] Gail-Joon Ahn, Hongxin Hu, and Jing Jin. Towards role-based authorization for OSGi

service environments. In Future Trends of Distributed Computing Systems. IEEE, 2008.

[21] The OSGi Alliance. OSGi service platform core specification.

[22] Mousa Alramadhan and Kewei Sha. An overview of access control mechanisms for in-

ternet of things. In International Conference on Computer Communication and Networks

(ICCCN).

152

[23] Asma Alshehri and Ravi Sandhu. Access control models for cloud-enabled internet of

things: A proposed architecture and research agenda. In Collaboration and Internet Com-

puting (CIC). IEEE, 2016.

[24] Safwa Ameer, James Benson, and Ravi Sandhu. The EGRBAC model for smart home IoT.

In 2020 IEEE 21st International Conference on Information Reuse and Integration for Data

Science (IRI), pages 457–462. IEEE, 2020.

[25] Safwa Ameer, James Benson, and Ravi Sandhu. An attribute-based approach toward a

secured smart-home iot access control and a comparison with a role-based approach. Infor-

mation, 2022.

[26] Safwa Ameer and Ravi Sandhu. The HABAC model for smart home iot and comparison to

EGRBAC. In Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-

Physical Systems, pages 39–48, 2021.

[27] Mahmoud Ammar, Giovanni Russello, and Bruno Crispo. Internet of things: A survey on

the security of IoT frameworks. Journal of Information Security and Applications, 2018.

[28] Bayu Anggorojati, Parikshit Narendra Mahalle, Neeli Rashmi Prasad, and Ramjee Prasad.

Capability-based access control delegation model on the federated IoT network. In Interna-

tional Symposium on Wireless Personal Multimedia Communications. IEEE, 2012.

[29] Orlando Arias, Jacob Wurm, Khoa Hoang, and Yier Jin. Privacy and security in internet of

things and wearable devices. Transactions on Multi-Scale Computing Systems, 2015.

[30] Bröring Arne, Zappa Achille, Vermesan Ovidiu, Främling Kary, Zaslavsky Arkady,

Gonzalez-Usach Regel, Szmeja Pawel, Carlos E Palau, Jacoby Michael, Ivana Podnar

Zarko, et al. Advancing IoT platforms interoperability. 2018.

[31] Fatih Bakir, R Wolski, and C Krintz. Caplets: Resource aware capability-based access

control for IoT. In Symposium on Edge Computing (SEC). IEEE, 2021.

153

[32] Shanay Behrad, Emmanuel Bertin, Stéphane Tuffin, and Noel Crespi. A new scalable au-

thentication and access control mechanism for 5G-based IoT. Future Generation Computer

Systems, 2020.

[33] Oladayo Bello and Sherali Zeadally. Intelligent device-to-device communication in the

internet of things. Systems Journal, 2014.

[34] Victoria Beltran and Antonio F Skarmeta. Overview of device access control in the IoT and

its challenges. Communications Magazine, 2018.

[35] Jorge Bernal Bernabe, Jose Luis Hernandez Ramos, and Antonio F Skarmeta Gomez.

TACIoT: multidimensional trust-aware access control system for the Internet of Things.

Soft Computing, 20(5):1763–1779, 2016.

[36] Philip A Bernstein and Nathan Goodman. Concurrency control in distributed database sys-

tems. In ACM Computing Surveys, 1981.

[37] Emmanuel Bertin, Dina Hussein, Cigdem Sengul, and Vincent Frey. Access control in the

internet of things: A survey of existing approaches and open research questions. Annals of

telecommunications, 2019.

[38] Bruhadeshwar Bezawada, Kyle Haefner, and Indrakshi Ray. Securing home iot environ-

ments with attribute-based access control. In Workshop on Attribute-Based Access Control.

ACM, 2018.

[39] Smriti Bhatt, Farhan Patwa, and Ravi Sandhu. Access control model for AWS internet of

things. In International Conference on Network and System Security. Springer, 2017.

[40] Smriti Bhatt and Ravi Sandhu. ABAC-CC: Attribute-based access control and communica-

tion control for internet of things. In Symposium on Access Control Models and Technologies

(SACMAT), 2020.

154

[41] Leepakshi Bindra, Changyuan Lin, et al. Decentralized access control for smart buildings

using metadata and smart contracts. In International Workshop on Software Engineering for

Smart Cyber-Physical Systems (SEsCPS). IEEE, 2019.

[42] Dario Bonino, Emiliano Castellina, and Fulvio Corno. The dog gateway: enabling ontology-

based intelligent domotic environments. Transactions on consumer electronics, 2008.

[43] Arne Bröring, Stefan Schmid, Corina-Kim Schindhelm, Abdelmajid Khelil, Sebastian

Käbisch, Denis Kramer, Danh Le Phuoc, Jelena Mitic, Darko Anicic, and Ernest Teniente.

Enabling IoT ecosystems through platform interoperability. IEEE software, 34(1):54–61,

2017.

[44] Arne Bröring, Andreas Ziller, Victor Charpenay, Aparna S Thuluva, Darko Anicic, Stefan

Schmid, Achille Zappa, Mari Paz Linares, Lars Mikkelsen, and Christian Seidel. The big

iot api-semantically enabling IoT interoperability. Pervasive Computing, 2018.

[45] Vitalik Buterin et al. A next-generation smart contract and decentralized application plat-

form. white paper, 2014.

[46] Jan Camenisch and Els Van Herreweghen. Design and implementation of the Idemix anony-

mous credential system. In Proceedings of the 9th ACM conference on Computer and com-

munications security, pages 21–30. ACM, 2002.

[47] Z Berkay Celik, Leonardo Babun, Amit Kumar Sikder, Hidayet Aksu, Gang Tan, Patrick

McDaniel, and A Selcuk Uluagac. Sensitive information tracking in commodity {IoT}. In

USENIX Security Symposium, 2018.

[48] Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptography

Conference. Springer, 2007.

[49] Melissa Chase and Sherman SM Chow. Improving privacy and security in multi-authority

attribute-based encryption. In ACM CCS, 2009.

155

[50] Manuel Cheminod, Luca Durante, Fulvio Valenza, and Adriano Valenzano. Toward

attribute-based access control policy in industrial networked systems. In International Work-

shop on Factory Communication Systems (WFCS), pages 1–9. IEEE, 2018.

[51] Huashan Chen, Marcus Pendleton, Laurent Njilla, and Shouhuai Xu. A survey on ethereum

systems security: Vulnerabilities, attacks, and defenses. ACM Computing Surveys (CSUR),

2020.

[52] Andrea Cimmino, Viktor Oravec, Fernando Serena, Peter Kostelnik, María Poveda-

Villalón, Athanasios Tryferidis, Raúl García-Castro, Stefan Vanya, Dimitrios Tzovaras, and

Christoph Grimm. VICINITY: IoT semantic interoperability based on the web of things. In

Distributed Computing in Sensor Systems (DCOSS). IEEE, 2019.

[53] Pietro Colombo and Elena Ferrari. Access control enforcement within MQTT-based internet

of things ecosystems. In Symposium on Access Control Models and Technologies(SACMAT).

ACM, 2018.

[54] Jason Crampton and George Loizou. Administrative scope: A foundation for role-based

administrative models. Transactions on Information and System Security (TISSEC), 2003.

[55] Jason Paul Cruz, Yuichi Kaji, and Naoto Yanai. RBAC-SC: Role-based access control using

smart contract. IEEE Access, 2018.

[56] Luis Cruz-Piris, Diego Rivera, Ivan Marsa-Maestre, Enrique De La Hoz, and Juan R Ve-

lasco. Access control mechanism for iot environments based on modelling communication

procedures as resources. Sensors, 2018.

[57] MAC Dekker et al. Rbac administration in distributed systems. In Symposium on Access

Control Models and Technologies. ACM, 2008.

[58] Tamara Denning, Tadayoshi Kohno, and Henry M Levy. Computer security and the modern

home. Communications Journal, 2013.

156

[59] David Derler, Kai Samelin, Daniel Slamanig, and Christoph Striecks. Fine-grained and con-

trolled rewriting in blockchains: Chameleon-Hashing gone attribute-based. IACR Cryptol.,

2019.

[60] Monika Di Angelo and Gernot Salzer. A survey of tools for analyzing Ethereum smart

contracts. In Decentralized Applications and Infrastructures. IEEE, 2019.

[61] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and Ji Wang.

Untangling blockchain: A data processing view of blockchain systems. IEEE Transactions

on Knowledge and Data Engineering, 2018.

[62] Danny Dolev and Andrew Yao. On the security of public key protocols. Transactions on

information theory, 1983.

[63] Yuji Dong, Kaiyu Wan, Xin Huang, and Yong Yue. Contexts-states-aware access control for

Internet of Things. In Computer Supported Cooperative Work in Design (CSCWD). IEEE,

2018.

[64] Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. Blockchain for IoT

security and privacy: The case study of a smart home. In International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops). IEEE, 2017.

[65] Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. LSB: A lightweight

scalable blockchain for iot security and anonymity. Journal of Parallel and Distributed

Computing, 2019.

[66] Sofia Dutta, Sai Sree Laya Chukkapalli, et al. Context sensitive access control in smart

home environments. In Big Data Security on Cloud. IEEE, 2020.

[67] Sofia Dutta, Sai Sree Laya Chukkapalli, Madhura Sulgekar, Swathi Krithivasan, Prajit Ku-

mar Das, and Anupam Joshi. Context sensitive access control in smart home environments.

In BigDataSecurity, HPSC and IDS. IEEE, 2020.

157

[68] Sofia Dutta, Sai Sree Laya Chukkapalli, Madhura Sulgekar, Swathi Krithivasan, Prajit Ku-

mar Das, and Anupam Joshi. Context sensitive access control in smart home environments.

In Big Data Security on Cloud (BigDataSecurity), High Performance and Smart Comput-

ing,(HPSC) and Intelligent Data and Security (IDS). IEEE, 2020.

[69] Sofia Dutta, Sai Sree Laya Chukkapalli, Madhura Sulgekar, Swathi Krithivasan, Prajit Ku-

mar Das, Anupam Joshi, et al. Context sensitive access control in smart home environments.

In Big Data Security on Cloud (BigDataSecurity 2020). IEEE, 2020.

[70] European Platforms Initiatives (EPI). Adaptive Gateways for dIverse muLtiple Environ-

ments.

[71] European Platforms Initiatives (EPI). Open virtual neighbourhood network to connect IoT

infrastructures and smart objects.

[72] Jingwen Fan, Yi He, Bo Tang, Qi Li, and Ravi Sandhu. Ruledger: Ensuring execution

integrity in trigger-action IoT platforms. In IEEE INFOCOM 2021-IEEE Conference on

Computer Communications, pages 1–10. IEEE, 2021.

[73] Alexander Felfernig, Seda Polat Erdeniz, Paolo Azzoni, Michael Jeran, Arda Akcay, and

Charalampos Doukas. Towards configuration technologies for IoT gateways. In Interna-

tional Configuration Workshop, 2016.

[74] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. Security analysis of emerging smart

home applications. In Symposium on security and privacy (S&P). IEEE, 2016.

[75] David Ferraiolo, Ramaswamy Chandramouli, Rick Kuhn, and Vincent Hu. Extensible ac-

cess control markup language (XACML) and next generation access control (NGAC). In

Workshop on Attribute Based Access Control. ACM, 2016.

[76] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed NIST standard for role-based access control. Transactions on Informa-

tion and System Security (TISSEC), 2001.

158

[77] Giancarlo Fortino, Claudio Savaglio, Carlos E Palau, Jara Suarez de Puga, Maria Ganzha,

Marcin Paprzycki, Miguel Montesinos, Antonio Liotta, and Miguel Llop. Towards multi-

layer interoperability of heterogeneous IoT platforms: The INTER-IoT approach. 2018.

[78] Behrang Fouladi and Sahand Ghanoun. Honey, iâm home!!, hacking zwave home automa-

tion systems. Black Hat USA, 2013.

[79] Behrang Fouladi and Sahand Ghanoun. Honey, Iâm home!!, hacking zwave home automa-

tion systems. Black Hat USA, 2013.

[80] Mario Frustaci, Pasquale Pace, and Gianluca Aloi. Securing the IoT world: Issues and

perspectives. In Standards for Communications and Networking (CSCN). IEEE, 2017.

[81] William C Garrison et al. On the practicality of cryptographically enforcing dynamic access

control policies in the cloud. In IEEE S&P, 2016.

[82] Dimitris Geneiatakis, Ioannis Kounelis, Ricardo Neisse, Igor Nai-Fovino, Gary Steri, and

Gianmarco Baldini. Security and privacy issues for an IoT based smart home. In Interna-

tional Convention on Information and Communication Technology, Electronics and Micro-

electronics (MIPRO). IEEE, 2017.

[83] Ivan Gojmerac, Peter Reichl, Ivana Podnar Žarko, and Sergios Soursos. Bridging IoT is-

lands: the symbIoTe project. e & i Elektrotechnik und Informationstechnik, 2016.

[84] Rohit Goyal, Nicola Dragoni, and Angelo Spognardi. Mind the tracker you wear: a security

analysis of wearable health trackers. In Symposium on Applied Computing. ACM, 2016.

[85] Yajuan Guan, Juan C Vasquez, Josep M Guerrero, Natalie Samovich, Stefan Vanya, Viktor

Oravec, Raúl García-Castro, Fernando Serena, María Poveda-Villalón, Carna Radojicic,

et al. An open virtual neighbourhood network to connect IoT infrastructures and smart

objectsâvicinity: Iot enables interoperability as a service. In Global Internet of Things

Summit (GIoTS). IEEE, 2017.

159

[86] Khalida Guesmia and Narhimene Boustia. OrBAC from access control model to access

usage model. Applied Intelligence, 2018.

[87] Hao Guo, Ehsan Meamari, and Chien-Chung Shen. Multi-authority attribute-based access

control with smart contract. In International Conference on Blockchain Technology. ACM,

2019.

[88] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. An evaluation

of distributed concurrency control. Proceedings of the VLDB Endowment, 2017.

[89] Sayed Hadi Hashemi, Faraz Faghri, Paul Rausch, and Roy H Campbell. World of em-

powered IoT users. In First International Conference on Internet-of-Things Design and

Implementation (IoTDI). IEEE, 2016.

[90] Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh Jain, Pranav Goyal, and Biplab Sik-

dar. A survey on IoT security: application areas, security threats, and solution architectures.

Access Journal, 2019.

[91] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Earlence Fer-

nandes, and Blase Ur. Rethinking access control and authentication for the home Internet of

Things (IoT). In 27th USENIX Security Symposium, 2018.

[92] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Earlence Fer-

nandes, and Blase Ur. Rethinking access control and authentication for the home internet of

things (IoT). In USENIX Security Symposium, 2018.

[93] Weijia He, Maximilian Golla, Roshni Padhi, Jordan Ofek, Markus Dürmuth, Earlence Fer-

nandes, and Blase Ur. Rethinking access control and authentication for the home internet of

things (IoT). In 27th {USENIX} Security Symposium, 2018.

[94] Weijia He, Valerie Zhao, Olivia Morkved, Sabeeka Siddiqui, Earlence Fernandes, Josiah

Hester, and Blase Ur. SoK: Context sensing for access control in the adversarial home IoT.

160

In 2021 IEEE European Symposium on Security and Privacy (EuroS&P), pages 37–53.

IEEE, 2021.

[95] Grant Hernandez, Orlando Arias, Daniel Buentello, and Yier Jin. Smart nest thermostat: A

smart spy in your home. Black Hat USA, 2014.

[96] José L Hernández-Ramos, Antonio J Jara, Leandro Marín, and Antonio F Skarmeta Gómez.

DCapBAC: embedding authorization logic into smart things through ECC optimizations.

International Journal of Computer Mathematics, 93(2):345–366, 2016.

[97] Grant Ho, Derek Leung, Pratyush Mishra, Ashkan Hosseini, Dawn Song, and David Wag-

ner. Smart locks: Lessons for securing commodity internet of things devices. In Proceedings

of the 11th ACM on Asia conference on computer and communications security (ASIACCS),

2016.

[98] Vincent Hu. Blockchain for access control systems. Technical report, National Institute of

Standards and Technology (NIST), 2021.

[99] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang, Margaret M

Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scarfone, et al. Guide to

attribute based access control (ABAC) definition and considerations (draft). NIST special

publication, 800(162):1–54, 2013.

[100] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. Access control for emerging dis-

tributed systems. In IEEE Computer, 2018.

[101] IEEE. Ieee standard for an architectural framework for the internet of things (IoT).

[102] RFC 6749 Internet Engineering Task Force (IETF). The OAuth 2.0 authorization

framework, 2012. Available at https://www.rfc-editor.org/rfc/pdfrfc/

rfc6749.txt.pdf.

161

[103] Marian K Iskander, Dave W Wilkinson, Adam J Lee, and Panos K Chrysanthis. Enforcing

policy and data consistency of cloud transactions. In Proceedings of 31st International Con-

ference on Distributed Computing Systems Workshops (ICDCSW), pages 253–262. IEEE,

2011.

[104] MD Azharul Islam and Sanjay Madria. A permissioned blockchain based access control

system for IoT. In Blockchain. IEEE, 2019.

[105] Abhiditya Jha, Jess Kropczynski, Heather Richter Lipford, and Pamela J Wisniewski. An

exploration on sharing smart home devices beyond the home. In IUI Workshops, 2019.

[106] Shravya Kanchi and Kamalakar Karlapalem. A multi perspective access control in a smart

home. In Conference on Data and Application Security and Privacy (CODASPY), 2021.

[107] Ji Eun Kim, Tassilo Barth, George Boulos, John Yackovich, Christian Beckel, and Daniel

Mosse. Seamless integration of heterogeneous devices and access control in smart homes

and its evaluation. Intelligent Buildings International, 2017.

[108] Tiffany Hyun-Jin Kim, Lujo Bauer, James Newsome, Adrian Perrig, and Jesse Walker. Chal-

lenges in access right assignment for secure home networks. In Workshop on Hot Topics in

Security (HotSec 10). USENIX, 2010.

[109] Tiffany Hyun-Jin Kim, Lujo Bauer, James Newsome, Adrian Perrig, and Jesse Walker. Chal-

lenges in access right assignment for secure home networks. In HotSec, 2010.

[110] Yki Kortesniemi and Mikko Sarela. Survey of certificate usage in distributed access control.

In Elsevier Journal of Computers and Security, volume 44, pages 16–32. Elsevier, 2014.

[111] Ram Krishnan, Jianwei Niu, Ravi Sandhu, and William H Winsborough. Stale-safe security

properties for group-based secure information sharing. In Proceedings of the 6th ACM

workshop on Formal methods in security engineering, pages 53–62. ACM, 2008.

162

[112] Ram Krishnan and Ravi Sandhu. Authorization policy specification and enforcement for

group-centric secure information sharing. In International Conference on Information Sys-

tems Security, pages 102–115. Springer, 2011.

[113] Nir Kshetri. Can blockchain strengthen the internet of things? IT professional, 2017.

[114] Adam J Lee, Kazuhiro Minami, and Nikita Borisov. Confidentiality-preserving distributed

proofs of conjunctive queries. In Proceedings of the 4th International Symposium on Infor-

mation, Computer, and Communications Security, pages 287–297. ACM, 2009.

[115] Adam J Lee, Kazuhiro Minami, and Marianne Winslett. Lightweight consistency enforce-

ment schemes for distributed proofs with hidden subtrees. In Proceedings of the 12th ACM

symposium on Access control models and technologies, pages 101–110. ACM, 2007.

[116] Adam J Lee and Marianne Winslett. Safety and consistency in policy-based authorization

systems. In Proceedings of the 13th ACM conference on Computer and communications

security, 2006.

[117] Adam J Lee and Ting Yu. Towards quantitative analysis of proofs of authorization: applica-

tions, framework, and techniques. In 23rd IEEE Computer Security Foundations Symposium

(CSF), pages 139–153. IEEE, 2010.

[118] Sanghak Lee, Jiwon Choi, Jihun Kim, Beumjin Cho, Sangho Lee, Hanjun Kim, and Jong

Kim. FACT: Functionality-centric access control system for iot programming frameworks.

In Proceedings of the 22nd ACM on Symposium on Access Control Models and Technologies

(SACMAT), 2017.

[119] Gerhard Leitner, Anton Fercher, Alexander Felfernig, Klaus Isak, S Polat Erdeniz, Arda

Akcay, and Michael Jeran. Recommending and configuring smart home installations. In

International Workshop on Configuration (ConfWS), 2016.

163

[120] Ninghui Li and Ziqing Mao. Administration in role-based access control. In Proceedings

of the 2nd ACM symposium on Information, computer and communications security, pages

127–138, 2007.

[121] Olof Liberg. The Cellular Internet of Things.

[122] Zhen Ling, Junzhou Luo, Yiling Xu, Chao Gao, Kui Wu, and Xinwen Fu. Security vul-

nerabilities of internet of things: A case study of the smart plug system. Internet of Things

Journal, 2017.

[123] Han Liu, Dezhi Han, and Dun Li. Fabric-IoT: A blockchain-based access control system in

IoT. Access, 2020.

[124] Emil C Lupu and Morris Sloman. Conflicts in policy-based distributed systems manage-

ment. Transactions on software engineering, 25(6):852–869, 1999.

[125] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. Blockchain based access

control. In IFIP international conference on distributed applications and interoperable

systems. Springer, 2017.

[126] Damiano Di Francesco Maesa, Paolo Mori, and Laura Ricci. A blockchain based approach

for the definition of auditable access control systems. Computers & Security, 2019.

[127] James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard Dobbs, Jacques

Bughin, and Dan Aharon. Unlocking the Potential of the Internet of Things. McKinsey

Global Institute, 2015.

[128] Antonio La Marra, Fabio Martinelli, Paolo Mori, Athanasios Rizos, and Andrea Saracino.

Improving MQTT by inclusion of usage control. In International Conference on Security,

Privacy and Anonymity in Computation, Communication and Storage(SpaCCS). Springer,

2017.

164

[129] Juri Mattila. The blockchain phenomenon–the disruptive potential of distributed consensus

architectures. Technical report, ETLA working papers, 2016.

[130] Katerina Megas, Barbara Cuthill, and Sarbari Gupta. Establishing confidence in iot device

security: How do we get there?(draft). Technical report, National Institute of Standards and

Technology (NIST), 2021.

[131] Francesca Meneghello, Matteo Calore, Daniel Zucchetto, Michele Polese, and Andrea

Zanella. Iot: Internet of threats? a survey of practical security vulnerabilities in real IoT

devices. Internet of Things Journal, 2019.

[132] Dominik Meyer, Jan Haase, Marcel Eckert, and Bernd Klauer. A threat-model for building

and home automation. In 14th international conference on INDustrial INformatics (INDIN).

IEEE, 2016.

[133] Ziarmal Nazar Mohammad, Fadi Farha, Adnan OM Abuassba, Shunkun Yang, and Fang

Zhou. Access control and authorization in smart homes: A survey. Tsinghua Science and

Technology, 2021.

[134] Satoshi Nakamoto. Bitcoin whitepaper. Available at https://bitcoin.org/

bitcoin.pdf, 2008.

[135] Yuta Nakamura, Yuanyu Zhang, Masahiro Sasabe, and Shoji Kasahara. Capability-based

access control for the internet of things: an Ethereum blockchain-based scheme. In Global

Communications Conference (GLOBECOM). IEEE, 2019.

[136] Antonio L Maia Neto, Artur LF Souza, Italo Cunha, Michele Nogueira, Ivan Oliveira Nunes,

Leonardo Cotta, Nicolas Gentille, Antonio AF Loureiro, Diego F Aranha, Harsh Kupwade

Patil, et al. AOT: Authentication and access control for the entire IoT device life-cycle. In

Conference on Embedded Network Sensor Systems CD-ROM (SenSys). ACM, 2016.

165

[137] RFC 5280 Network Working Group. Internet X.509 public key infrastructure certificate

(PKI) and certificate revocation list (CRL) profile, 2008. Available at https://www.

rfc-editor.org/rfc/pdfrfc/rfc5280.txt.pdf.

[138] Qun Ni, Elisa Bertino, and Jorge Lobo. Risk-based access control systems built on fuzzy

inferences. In Proceedings of the 5th ACM Symposium on Information, Computer and Com-

munications Security, pages 250–260. ACM, 2010.

[139] Sukhvir Notra, Muhammad Siddiqi, Hassan Habibi Gharakheili, Vijay Sivaraman, and

Roksana Boreli. An experimental study of security and privacy risks with emerging house-

hold appliances. In CNS. IEEE, 2014.

[140] Mahda Noura, Mohammed Atiquzzaman, and Martin Gaedke. Interoperability in internet

of things: Taxonomies and open challenges. Mobile networks and applications, 2019.

[141] Oscar Novo. Blockchain meets IoT: An architecture for scalable access management in IoT.

Internet of Things Journal, 2018.

[142] OASIS. Security Assertion Markup Language (SAML) V2.0 Technical Overview,

2008. Available at http://docs.oasis-open.org/security/saml/Post2.

0/sstc-saml-tech-overview-2.0.pdf.

[143] Se-Ra Oh, Young-Gab Kim, and Sanghyun Cho. An interoperable access control framework

for diverse IoT platforms based on OAuth and role. Sensors, 2019.

[144] B Cli ord Neuman. Scale in distributed systems. ISI/USC, page 68, 1994.

[145] Aafaf Ouaddah, Anas Abou El Kalam, and Abdellah Ait Ouahman. Harnessing the power

of blockchain technology to solve IoT security & privacy issues. In ICC, 2017.

[146] Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. Fairaccess: a new

blockchain-based access control framework for the Internet of Things. Security and com-

munication networks, 2016.

166

[147] Aafaf Ouaddah, Anas Abou Elkalam, and Abdellah Ait Ouahman. Towards a novel privacy-

preserving access control model based on blockchain technology in IoT. In Europe and

MENA cooperation advances in information and communication technologies. Springer,

2017.

[148] Aafaf Ouaddah, Hajar Mousannif, Anas Abou Elkalam, and Abdellah Ait Ouahman. Access

control in the internet of things: Big challenges and new opportunities. Computer Networks,

2017.

[149] Federica Paci, Massimo Mecella, Mourad Ouzzani, and Elisa Bertino. ACConv–an access

control model for conversational web services. ACM Transactions on the Web (TWEB),

5(3):13, 2011.

[150] Jaehong Park and Ravi Sandhu. The UCON_ABC usage control model. Transactions on

information and system security (TISSEC), 2004.

[151] Sean Peisert, Ed Talbot, and Matt Bishop. Turtles all the way down: a clean-slate, ground-

up, first-principles approach to secure systems. In Proceedings of the 2012 New Security

Paradigms Workshop, pages 15–26. ACM, 2012.

[152] Víctor Peláez, Roberto González, Luis Ángel San Martín, Antonio Campos, and Vanesa

Lobato. Multilevel and hybrid architecture for device abstraction and context information

management in smart home environments. In International Joint Conference on Ambient

Intelligence. Springer, 2010.

[153] Charith Perera, Prem Prakash Jayaraman, Arkady Zaslavsky, Peter Christen, and Dimitrios

Georgakopoulos. Context-aware dynamic discovery and configuration of âthingsâ in smart

environments. In Big Data and Internet of Things: A Roadmap for Smart Environments.

Springer, 2014.

[154] Matthieu Perrin. Distributed systems: concurrency and consistency. Elsevier, 2017.

167

[155] Otto Julio Ahlert Pinno, Andre Ricardo Abed Gregio, and Luis CE De Bona. Controlchain:

Blockchain as a central enabler for access control authorizations in the IoT. In GLOBECOM

Global Communications Conference. IEEE, 2017.

[156] Geong Sen Poh, Prosanta Gope, and Jianting Ning. Privhome: Privacy-preserving authenti-

cated communication in smart home environment. IEEE Transactions on Dependable and

Secure Computing, 18(3):1095–1107, 2019.

[157] Jing Qiu, Zhihong Tian, Chunlai Du, Qi Zuo, Shen Su, and Binxing Fang. A survey on

access control in the age of internet of things. Internet of Things Journal, 2020.

[158] Jing Qiu, Zhihong Tian, Chunlai Du, Qi Zuo, Shen Su, and Binxing Fang. A survey on

access control in the age of internet of things. Internet of Things Journal, 2020.

[159] Mohsin Ur Rahman. Scalable role-based access control using the EOS blockchain. arXiv

preprint arXiv:2007.02163, 2020.

[160] Sowmya Ravidas, Alexios Lekidis, Federica Paci, and Nicola Zannone. Access control in

Internet-of-Things: A survey. Journal of Network and Computer Applications, 2019.

[161] Indrakshi Ray, Ramadan Abdunabi, and Rejina Basnet. Access control for internet of things

applications. In Workshop on Cyber-Physical System Security. ACM, 2019.

[162] CORDIS EU Research Results. Big iot-bridging the interoperability gap of the Internet of

Things.

[163] CORDIS EU Research Results. Building an IoT OPen innovation Ecosystem for connected

smart objects.

[164] CORDIS EU Research Results. symbIoTe-Symbiosis of smart objects across IoT environ-

ments.

168

[165] Ana Reyna, Cristian Martín, Jaime Chen, Enrique Soler, and Manuel Díaz. On blockchain

and its integration with IoT. challenges and opportunities. Future generation computer

systems, 2018.

[166] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin OâFlynn. Iot goes nuclear: Cre-

ating a zigbee chain reaction. In Symposium on Security and Privacy (S&P). IEEE, 2017.

[167] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin OâFlynn. Iot goes nuclear: Cre-

ating a ZigBee chain reaction. In Symposium on Security and Privacy (SP). IEEE, 2017.

[168] Sara Rouhani and Ralph Deters. Blockchain based access control systems: State of the art

and challenges. In IEEE/WIC/ACM International Conference on Web Intelligence, 2019.

[169] Ravi Sandhu. The PEI framework for application-centric security. In Collaborative Com-

puting: Networking, Applications and Worksharing. IEEE, 2009.

[170] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for role-

based administration of roles. Transactions on Information and System Security (TISSEC),

1999.

[171] Ravi Sandhu and Jaehong Park. Usage control: A vision for next generation access control.

In MMM-ACNS. Springer, 2003.

[172] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based

access control models. Computer, 1996.

[173] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice. IEEE

communications magazine, 32(9):40–48, 1994.

[174] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice. Communi-

cations Magazine, 1994.

169

[175] Stefan Schmid, Arne Bröring, Denis Kramer, Sebastian Käbisch, Achille Zappa, Martin

Lorenz, Yong Wang, Andreas Rausch, and Luca Gioppo. An architecture for interoperable

iot ecosystems. In Interoperability and Open-Source Solutions. Springer, 2016.

[176] Savio Sciancalepore et al. On the design of a decentralized and multiauthority access control

scheme in federated and cloud-assisted cyber-physical systems. In IEEE Internet of Things

Journal, 2018.

[177] Savio Sciancalepore, Giuseppe Piro, Daniele Caldarola, Gennaro Boggia, and Giuseppe

Bianchi. OAuth-IoT: An access control framework for the Internet of Things based on open

standards. In Symposium on Computers and Communications (ISCC). IEEE, 2017.

[178] Savio Sciancalepore, Giuseppe Piro, Daniele Caldarola, Gennaro Boggia, and Giuseppe

Bianchi. On the design of a decentralized and multiauthority access control scheme in

federated and cloud-assisted cyber-physical systems. Internet of Things Journal, 2018.

[179] Byoungjin Seok, Jose Costa Sapalo Sicato, Tcydenova Erzhena, Canshou Xuan, Yi Pan,

and Jong Hyuk Park. Secure d2d communication for 5g iot network based on lightweight

cryptography. Applied Sciences, 2020.

[180] Martin Serrano, Hoan Nguyen Mau Quoc, Danh Le Phuoc, Manfred Hauswirth, John

Soldatos, Nikos Kefalakis, Prem Prakash Jayaraman, and Arkady Zaslavsky. Defining the

stack for service delivery models and interoperability in the Internet of Things: A practical

case with OpenIoT-VDK. IEEE Journal on Selected Areas in Communications, 33(4):676–

689, 2015.

[181] Kinza Shafique, Bilal A Khawaja, Farah Sabir, Sameer Qazi, and Muhammad Mustaqim.

Internet of things (IoT) for next-generation smart systems: A review of current challenges,

future trends and prospects for emerging 5G-IoT scenarios. Access, 2020.

170

[182] Kinza Shafique, Bilal A Khawaja, Farah Sabir, Sameer Qazi, and Muhammad Mustaqim.

Internet of things (IoT) for next-generation smart systems: A review of current challenges,

future trends and prospects for emerging 5g-iot scenarios. Access Journal, 2020.

[183] Mehrnoosh Shakarami and Ravi Sandhu. Refresh instead of revoke enhances safety and

availability: A formal analysis. In IFIP Annual Conference on Data and Applications Secu-

rity and Privacy, pages 301–313. Springer, 2019.

[184] Mehrnoosh Shakarami and Ravi Sandhu. Safety and consistency of mutable attributes us-

ing quotas: A formal analysis. In Trust, Privacy and Security in Intelligent Systems and

Applications (TPS-ISA). IEEE, 2019.

[185] Mehrnoosh Shakarami and Ravi Sandhu. Safety and consistency of subject attributes for

attribute-based pre-authorization systems. In National Cyber Summit, pages 248–263.

Springer, 2019.

[186] Mehrnoosh Shakarami and Ravi Sandhu. Role-based administration of role-based smart

home IoT. In Workshop on Secure and Trustworthy Cyber-Physical Systems. ACM, 2021.

[187] Amit Kumar Sikder, Leonardo Babun, Z Berkay Celik, Abbas Acar, Hidayet Aksu, Patrick

McDaniel, Engin Kirda, and A Selcuk Uluagac. Kratos: multi-user multi-device-aware

access control system for the smart home. In Security and Privacy in Wireless and Mobile

Networks. ACM, 2020.

[188] John Soldatos, Nikos Kefalakis, Manfred Hauswirth, Martin Serrano, Jean-Paul Calbi-

monte, Mehdi Riahi, Karl Aberer, Prem Prakash Jayaraman, Arkady Zaslavsky, Ivana Pod-

nar Žarko, et al. OpenIoT: Open source internet-of-things in the cloud. In Interoperability

and open-source solutions for the internet of things, pages 13–25. Springer, 2015.

[189] Sergios Soursos, Ivana Podnar Žarko, Patrick Zwickl, Ivan Gojmerac, Giuseppe Bianchi,

and Gino Carrozzo. Towards the cross-domain interoperability of IoT platforms. In 2016

European conference on networks and communications (EuCNC). IEEE, 2016.

171

[190] Anna C Squicciarini, Alberto Trombetta, Elisa Bertino, and Stefano Braghin. Identity-based

long running negotiations. In Proceedings of the 4th ACM workshop on Digital identity

management, pages 97–106. ACM, 2008.

[191] Mark Stanislav and Tod Beardsley. Hacking IoT: A case study on baby monitor exposures

and vulnerabilities. Rapid7 Report, 2015.

[192] Martin van Steen and Andrew S. Tanenbaum. Distributed Systems. Martin van Steen, 2017.

[193] Madiha Tabassum, Jess Kropczynski, Pamela Wisniewski, and Heather Richter Lipford.

Smart home beyond the home: A case for community-based access control. In CHI Confer-

ence on Human Factors in Computing Systems, 2020.

[194] Madiha Tabassum, Jess Kropczynski, Pamela Wisniewski, and Heather Richter Lipford.

Smart home beyond the home: A case for community-based access control. In CHI Confer-

ence on Human Factors in Computing Systems. ACM, 2020.

[195] Liang Tan, Na Shi, Keping Yu, Moayad Aloqaily, and Yaser Jararweh. A blockchain-

empowered access control framework for smart devices in green Internet of Things. Trans-

actions on Internet Technology (TOIT), 2021.

[196] Pietro Tedeschi, Giuseppe Piro, Jose Antonio Sanchez Murillo, Nemanja Ignjatov, Michał

Pilc, Kaspar Lebloch, and Gennaro Boggia. Blockchain as a service: Securing bartering

functionalities in the H2020 symbIoTe framework. Internet Technology Letters, 2019.

[197] The Global Community that Develops Standards for IoT. onem2m:standards for m2m and

the internet of things.

[198] Yuan Tian, Nan Zhang, Yueh-Hsun Lin, XiaoFeng Wang, Blase Ur, Xianzheng Guo, and

Patrick Tague. Smartauth: User-centered authorization for the internet of things. In 26th

{USENIX} Security Symposium, 2017.

172

[199] Petar Tsankov, Srdjan Marinovic, Mohammad Torabi Dashti, and David Basin. Fail-secure

access control. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, pages 1157–1168. ACM, 2014.

[200] Hannes Tschofenig, Jari Arkko, Dave Thaler, and D McPherson. Architectural considera-

tions in smart object networking. RFC 7452, 2015.

[201] Mark Turner, David Budgen, and Pearl Brereton. Turning software into a service. Computer,

36(10):38–44, 2003.

[202] Blase Ur, Jaeyeon Jung, and Stuart Schechter. The current state of access control for smart

devices in homes. In Workshop on Home Usable Privacy and Security (HUPS). HUPS,

2013.

[203] Qihua Wang and Hongxia Jin. Quantified risk-adaptive access control for patient privacy

protection in health information systems. In Proceedings of the 6th ACM symposium on

information, computer and communications security, pages 406–410. ACM, 2011.

[204] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum project yellow paper, 151(2014):1–32, 2014.

[205] Karl Wüst and Arthur Gervais. Do you need a blockchain? In Crypto Valley Conference on

Blockchain Technology (CVCBT). IEEE, 2018.

[206] Min Xu, Duminda Wijesekera, Xinwen Zhang, and Deshan Cooray. Towards session-aware

RBAC administration and enforcement with XACML. In International Symposium on Poli-

cies for Distributed Systems and Networks. IEEE, 2009.

[207] Ronghua Xu, Yu Chen, Erik Blasch, and Genshe Chen. BlendCAC: A blockchain-enabled

decentralized capability-based access control for IoTs. In Internet of Things (iThings). IEEE,

2018.

173

[208] Kan Yang et al. DAC-MACS: Effective data access control for multiauthority cloud storage

systems. In IEEE Information Forensics and Security, 2013.

[209] Kan Yang and Xiaohua Jia. Attributed-based access control for multi-authority systems in

cloud storage. In IEEE ICDCS, 2012.

[210] Kan Yang and Xiaohua Jia. Expressive, efficient, and revocable data access control for

multi-authority cloud storage. In IEEE Parallel and Distributed Systems, 2014.

[211] Yuchen Yang, Longfei Wu, Guisheng Yin, Lijie Li, and Hongbin Zhao. A survey on security

and privacy issues in internet-of-things. Internet of Things Journal, 2017.

[212] Ehtesham Zahoor et al. Authorization policies specification and consistency management

within multi-cloud environments. In NordSec. Springer, 2018.

[213] Eric Zeng, Shrirang Mare, and Franziska Roesner. End user security and privacy concerns

with smart homes. In thirteenth symposium on usable privacy and security ({SOUPS}),

2017.

[214] Eric Zeng and Franziska Roesner. Understanding and improving security and privacy in

multi-user smart homes: a design exploration and in-home user study. In 28th {USENIX}

Security Symposium, 2019.

[215] Eric Zeng and Franziska Roesner. Understanding and improving security and privacy in

multi-user smart homes: a design exploration and in-home user study. In 28th {USENIX}

Security Symposium ({USENIX} Security 19), 2019.

[216] Guoping Zhang and Jiazheng Tian. An extended role based access control model for the

Internet of Things. In International Conference on Information, Networking and Automation

(ICINA). IEEE, 2010.

[217] Yuanyu Zhang, Shoji Kasahara, et al. Smart contract-based access control for the internet

of things. Internet of Things Journal, 2018.

174

[218] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and Yuqing

Zhang. Discovering and understanding the security hazards in the interactions between

{IoT} devices, mobile apps, and clouds on smart home platforms. In 28th USENIX Security

Symposium, 2019.

175

VITA

Mehrnoosh Shakarami was born and grew up in Khorram Abad, Lorestan, Iran. She earned

her Bachelor’s Degree in Computer Software Engineering in August 2005 from Yazd University,

Yazd, Iran. She graduated with a Master’s degree in Computer Software Engineering from Sharif

University of Technology, Tehran, Iran in Feb 2009. She worked as faculty member, instructor of

core Computer Science courses and group manager in the Computer Engineering group of Lorestan

University for six years. She has been admitted to the PhD Program in Computer Science in

August 2015 at State University of New York at Binghamton (SUNY-Binghamton). In Spring

2018, Mehrnoosh transferred her studies to University of Texas at San Antonio (UTSA) where she

joined Institute for Cyber Security (ICS) as a PhD student in the Department of Computer Science.

She started her research under supervision of Professor Ravi Sandhu, focused on operation and

administration of access control models in IoT environments. She also received a Master’s degree

in Computer Science from UTSA with specialization in Computer and Information Security.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Motivation
	Problem Statement and Solution Approach
	Thesis Statements
	Scope and Assumptions
	Summary of Contributions
	Organization of Dissertation

	Chapter 2: Background and Literature Review
	Safety and Consistency Problem
	Lee-Winslett Safety and Consistency in Trust Negotiation Systems

	IoT Access Control Models
	EGRBAC: Extended Generalized RBAC for Smart Home IoT
	Blockchain-Based Access Control in IoT

	Device-to-Device Communication in IoT Environments

	Chapter 3: Safety and Consistency of Subject Attributes in Distributed ABAC Environments: A Smart Home Use Case
	Motivation
	Safety and Consistency of Subject Attributes for Attribute-Based Pre-Authorization Systems
	Problem Statement and System Assumptions
	Consistency Levels

	Refresh Instead of Revoke Enhances Safety and Availability: A Formal Analysis
	Problem Statement and System Assumptions
	Consistency Levels
	Forward-looking Consistency
	Smart home Use Case

	Safety and Consistency of Mutable Attributes Using Quotas: A Formal Analysis
	Problem Statement and System Assumptions
	Use Case Scenarios
	Consistency Levels for Distributed Quota-Based Distribution Methods
	Formal Specification of Consistency Levels
	Smart Home Use Case

	Discussion: Model Properties and Limitations
	Safety and Consistency of Subject Attributes for Attribute-Based Pre-Authorization Systems
	Refresh Instead of Revoke Enhances Safety and Availability
	Safety and Consistency of Mutable Attributes Using Quotas

	Chapter 4: User-to-Device Administration of Access in Smart Home IoT Environments
	Role-Based Administration of Role-Based Smart Home IoT
	Motivation
	An RBAC Administrative Model for Smart Home IoT
	Use Case Definition
	Administrative Model Extension

	Blockchain-Based Administration of Access in Smart Home IoT
	Problem Statement and Motivation
	Blockchain For Access Control
	PEI: Underlying Administrative Policy
	PEI: Enforcement Architecture
	Sequence Diagram
	PEI: Implementation

	Discussion: Model/Architecture Properties and Limitations

	Chapter 5: Device-to-Device Access Control for IoT Collaboration in Smart Home Environments
	Motivation
	Message-Based D2D ABAC Authorization Model
	Conceptual Model
	Formal Model
	Smart Home Use Case
	Threat Model

	Scenario-Based D2D ABAC Authorization Model
	Conceptual Model
	Formal Model
	Smart Home Use Case

	Enforcement Architecture
	Implementation
	Experiment Setup
	Implementation Results

	Discussion: Model/Architecture Properties and Limitations

	Chapter 6: Conclusion and Future Work
	Summary
	Future Work

	Bibliography
	Vita

